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Abstract

In this thesis, the effects of adding procurement information to a sales-based
regime model, which is used for predicting price trends in a simulated supply
chain, are researched. This supply chain is simulated in the TAC SCM game,
which is an annual international competition held for several years, where
researchers from around the world submit their artificial trading agents. The
regime model extended in this thesis is used by the MinneTAC agent of the
University of Minnesota.

We find that component offer prices can be used to extend the regime
model, which is currently based on a one-dimensional Gaussian Mixture
Model where probabilities are clustered. The resulting clusters hold as
regimes. Extending the model with a new dimension results in newly defined
regime clusters. Implementing the new regime model, MinneTAC increases
its customer orders significantly. However, because the agent configuration
shows a structural error in predicting future price trends – possibly due to
an insufficient pricing mechanism – we have strong indications that our new
approach leads to lower profits, although the decrease of the amount of cash
at the end of a game is not significant. We believe that this decrease of
profits can be tackled in the future by research into price trend prediction
in the newly defined regime model.
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List of Symbols

This section contains a summary of symbols used in equations introduced
in this thesis. In table 1, a definition is given for each symbol.

Symbol Definition
α, β, γ Smoothing coefficients
d Current day
M Number of regimes
N Number of Gaussians in the Gaussian Mixture Model
np Normalized sales price
ñp Double exponentially smoothed mean normalized sales

price (approximated with mid-range)
ñpmax Double exponentially smoothed maximum normalized

sales price
ñpmin Double exponentially smoothed minimum normalized

sales price
op Procurement offer price
õp Exponentially smoothed mean procurement offer price
P (ζi) Prior probability of the i-th Gaussian of the Gaussian

Mixture Model
P (ζi|np) Posterior probability of the i-th Gaussian of the Gaus-

sian Mixture Model, dependent on the normalized sales
price

P (ζi|np ∩ op) Posterior probability of the i-th Gaussian of the Gaus-
sian Mixture Model, dependent on the normalized sales
price and procurement offer price

P (ζ|r) N by M matrix containing conditional probabilities re-
sulting from K-Means clustering

P (Rk|np) Posterior probability of regime k dependent on the nor-
malized sales price

P (Rk|np ∩ op) Posterior probability of regime k dependent on the nor-
malized sales price and procurement offer price

p (np) Density of the normalized sales price

Table 1: Summary of notation.
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Symbol Definition
p (np|ζi) Density of the normalized sales price, given the i-th

Gaussian of the Gaussian Mixture Model
p (np|Rk) Density of the normalized sales price, given the k-th

regime
p (np ∩ op) Density of the normalized sales price and procurement

offer price
p (np ∩ op|ζi) Density of the normalized sales price and procurement

offer price, given the i-th Gaussian of the Gaussian Mix-
ture Model

p (np ∩ op|Rk) Density of the normalized sales price and procurement
offer price, given the k-th regime

Rk k-th regime, k = 1, 2, . . . ,M
T (rd+n|rd) Markov transition matrix for n days into the future
t̃r

max
Predicted trend for future maximum sales prices

t̃r
min

Predicted trend for future minimum sales prices
t̃r

np
Predicted trend for future mean sales prices

t̃r
op

Predicted trend for future mean procurement offer
prices

x, y, z Procurement variable types 1 through 3
x̃, ỹ, z̃ Exponentially smoothed procurement variable types 1

through 3

Table 1: Summary of notation, continued.
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Chapter 1

Introduction

Because of the extremely competitive character of today’s markets, it is valu-
able to gain insight in the dynamics of supply chains and to research supply
chain optimization possibilities, both for individual elements in the chain,
as well as for the chain as a whole. Every company is in a market and is also
part of a supply chain, which is, according to Ghiani et al. [1], a complex
logistics system in which raw materials are converted into finished products
and then distributed to the final users (consumers or companies). A supply
chain includes suppliers, manufacturing centers, warehouses, distribution
centers and retail outlets. Within a chain, every element adds some sort of
value to the final product (or service) and also fulfills a function within the
chain.

A simplified supply chain consists of suppliers, traders, and customers.
Such a chain is simulated in the Trading Agent Competition for Supply
Chain Management (TAC SCM), which is an international competition for
designing trading agents for an imaginary simulated personal computer sup-
ply chain. In the TAC SCM game, the individual agent’s profits have to be
maximized. Because of the economic relevance and the software engineering
challenges, a lot of research has already been done on both the TAC SCM
game and its participating agents. One of these agents is the MinneTAC
agent, an agent created by the University of Minnesota (UMN). Despite all
the research that has already been done, the performance of MinneTAC’s
numerous activities (like sales and procurement activities) can still be im-
proved in many ways.

1.1 Background

In 2003, the first Trading Agent Competition for Supply Chain Management
(TAC SCM) game was held. The TAC SCM game, as introduced by the
Carnegie Mellon University (CMU) and the Swedish Institute of Computer
Science (SICS), is an annual international competition which is designed to
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promote and encourage high quality research into trading agents. TAC SCM
is part of the International Trading Agent Competition, which also encapsu-
lates the TAC Classic competition (since 2002). The TAC SCM game offers
a complex simulated trading environment for a personal computer (PC) sup-
ply chain, in which teams from around the world can compete using their
artificial trading agents. In each TAC SCM game, trading agents compete
with each other in the sales market for customers and in a procurement
market for computer components, trying to maximize their profits.

The competition attracts researchers from all over the world, because of
its characteristics. The TAC SCM game environment is designed in such a
way that it contains many characteristics that can be found in real-life supply
chains as well, such as unpredictable opponents and interdependent chain
entities. The supply chain simulated in the TAC SCM game offers many
research opportunities into various subjects, such as price setting strategies,
as well as prediction strategies for competitor behavior or market charac-
teristics and developments. Because of its (increasing) complexity and size,
new sub-competitions of the TAC SCM game have emerged over the past
few years, which focus on specific parts of supply chain management, such
as optimizing price predictions, which is the main activity in the TAC SCM
Prediction Challenge.

As stated in the introduction of this chapter, the University of Minnesota
(UMN) is one of the competitors in the TAC SCM game. Their MinneTAC
trading agent [2] is a multi-component trading agent which bases its sales
decisions on identified and predicted economic regimes, given the estimated
normalized mean (sales) price. Until now, regime identification and predic-
tion are solely based on sales information, which gives room for improvement
of the agent’s overall performance.

Besides MinneTAC, a large number of other agents also compete in the
TAC SCM game, of which a few have good performance on a regular basis.
Similar to the MinneTAC trading agent, these competitors apply prediction
techniques as a basis of their decision making. The applied techniques vary
for each agent. Also, each agent has its own specializations, so that one
agent performs well in procurement-related tasks, whereas another agent
performs well in sales-related tasks.

Well-known and well-performing trading agents of past TAC SCM games
are TacTex [3], University of Michigan’s DeepMaize [4], PhantAgent [5],
University of Thessaloniki’s Mertacor [6], and the CMieux agent [7], CMU’s
own submission to the TAC SCM game. The TacTex agent is based on ma-
chine learning algorithms to learn from historical (market) data, whereas the
DeepMaize agent – winner of the TAC SCM 2008 Finals [8] – mainly relies
on empirical game-theoretic analyses to be able to make predictions. The
module-based Mertacor trading agent employs a combination of operations
research techniques, heuristics, adaptive algorithms, and statistical model-
ing techniques. The PhantAgent is also characterized by the fact that it
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does not use complicated algorithms throughout the agent, but that it uses
simple heuristics and assumptions instead. One thing that distinguishes the
CMieux agent from other agents, is that this trading agent continuously
re-evaluates its (low-level and high-level) strategies, whereas a lot of other
participating trading agents do not perform certain actions continuously,
but only once in a while. Apparently, this approach yields good results,
since the CMieux agent placed third in the TAC SCM 2008 Finals.

The MinneTAC trading agent has proven to be successful as well in past
TAC SCM competitions by placing fifth and sixth in the TAC SCM 2005 and
2006 Finals respectively [9, 10]. MinneTAC’s performance deteriorated in
the games of 2007, where the agent did not make it past the TAC SCM 2007
Quarter-Finals [11], but improved again in 2008, when MinneTAC reached
the TAC SCM 2008 Semi-Finals and placed fourth [12]. UMN’s trading
agent has proven to be able to compete with other strong competitors in the
past, and therefore, improving the core of the agent might bring MinneTAC
back in future TAC SCM finals.

1.2 Goal and Research Question

Because the performance of the MinneTAC agent in TAC SCM games falls
behind with other competitors, the goal of this master’s thesis is to investi-
gate the possibilities of improving MinneTAC’s existing regime identification
and prediction process. These are the core features upon which most of the
sales decisions made by the MinneTAC trading agent in a TAC SCM game
are based. Thus, improving these processes could have a great impact on the
agent’s performance and is likely to result in a good ranking for MinneTAC
in the TAC SCM games of 2009.

Conducting research in the fields of identifying and predicting economic
regimes, as well as the MinneTAC agent and the TAC SCM game, is also
relevant from an economics and informatics point of view. Combining tech-
niques from informatics with economic theory to solve problems in economic
environments contributes to novel approaches to existing problems. Fur-
thermore, understanding the dynamics of supply chains and investigating
strategies (e.g., for pricing or procurement) is important for players in to-
day’s highly competitive markets, because competitive advantages can be
obtained when taking results of research in our fields into account. For
instance, not being able to correctly identify and predict regime changes,
which are important events in time series, causes (sales) decisions to be bi-
ased, which could result in a decrease of profit (or in bad rankings in case
of a TAC SCM game). Identifying and predicting regimes more accurately
enables players in a supply chain to make better decisions.

Since MinneTAC’s regime identification and prediction both are cur-
rently solely based on sales information, we need to alter the processes in
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such a way that other valuable information such as procurement informa-
tion – which is also available to the agent – is used. Currently, procurement
information is not used in MinneTAC’s internal regime model, but is likely
to influence pricing strategies and is (partially) available to the agent dur-
ing a game, making it a good candidate for usage in an extended regime
model. This information can be extracted from the market reports which
are distributed to all agents in a TAC SCM game every twenty days. Also,
information can be estimated or gathered during a game, since not all (pro-
curement) information is available to an agent in every detail. Resulting
from these observations, the main research question to be answered in this
master’s thesis is:

What is the effect of adding procurement information to MinneTAC’s
regime identification and prediction model?

1.3 Methodology

In order to be able to give an answer to the research question posed in
section 1.2 and to achieve the objective mentioned in the latter section, the
methodology as discussed here is used.

First of all, a literature survey is done, focussing on the exact specifica-
tions of the TAC SCM game and the characteristics of the MinneTAC trad-
ing agent and its competitors. This should give some proper understanding
of the constraints posed by the environment MinneTAC is designed for, as
well as the processes which are to be altered or improved. Furthermore, the
literature survey enables us to elaborate on how regime identification and
prediction are currently done.

Subsequently, ways of improving the regime identification and predic-
tion are investigated, for instance how and when to utilize available pro-
curement information. This results in an extended version of the current
regime model, implementing procurement information. For that, we need a
data set containing – among others – procurement information. This data
set contains historical game data from TAC SCM games of 2007 and 2008
and is described in more detail in chapter 3.

In order to be able to extend the current regime model, we preselect
one variable from the data set, which is the procurement information to be
implemented in the agent’s regime model. We determine the procurement
variable with the highest likelihood of improving MinneTAC’s performance
by applying feature selection.

After extending the regime model with some procurement information
and training new regime models using the data set, it is required to test
the performance of the suggested improvements. First of all, performance
of the improvements is assessed offline using all available historical data.
Evaluation measures include entropies and correlations. Validation is done
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by means of comparison to the current regime model and by evaluating the
course of identified regime probabilities.

Finally, an optimal configuration is determined, which is subsequently
implemented in the agent, after which several test games are run against
other competitors. The results of these online experiments are used as ver-
ification of the regime model, and are evaluated by considering the changes
in MinneTAC’s bank account balance and its number of competitor orders
at the end of a TAC SCM game.

1.4 Structure

The structure of the thesis is as follows. First, a literature review is pre-
sented in chapter 2, which discusses topics related to TAC SCM and Min-
neTAC, as well as other relevant areas. Subsequently, the data set to be
used for some of our experiments is introduced in chapter 3. Also, we try
to identify a good performing procurement variable in this chapter, which is
used in chapter 4 to alter MinneTAC’s regime identification and prediction
processes. A newly defined regime model based on sales and procurement
information is experimented with in chapter 5. Finally, experimental results
are discussed in chapter 6 and conclusions are drawn in chapter 7.
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Chapter 2

TAC SCM and MinneTAC:
Introducing Regimes

This literature survey discusses the main specifications of the TAC SCM
game, since we need to know the constraints posed by the environment
when investigating the possibilities to extend MinneTAC’s existing regime
model. Furthermore, the MinneTAC trading agent is discussed in detail.
This includes relevant economic models and the regime model as it is imple-
mented now, in order to outline the model that is to be extended. Finally, we
suggest some general improvements and we give an overview of the state of
the art of a few competitor agents, to illustrate other approaches for trading
in the TAC SCM game.

2.1 The TAC SCM Game

In 2003, the first Trading Agent Competition for Supply Chain Manage-
ment (TAC SCM) game [13] was held. The TAC SCM game is a yearly
international competition which is designed to promote and encourage high
quality research into trading agents. The game simulates a supply chain
for personal computers (PCs), which consists of customers, six traders, and
eight suppliers. In total, sixteen types of PCs are available, which can be
classified into three market segments: the low-, mid-, and high-range prod-
ucts. Each game simulates a total number of 220 trading days, on which
human-created artificial trading agents place bids, buy products, and sell
products, while trying to optimize their profits. Even though trading agents
are human-created, human intervention is not allowed during a game. Gen-
erating supply and demand, generating market reports every twenty days
with information about shipments and orders, and providing banking, pro-
duction, and warehousing services are taken care of by the TAC SCM game.

Figure 2.1 illustrates the basic concepts of the TAC SCM game. The
introduction of this section introduced the three main supply chain players:
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customers, traders and suppliers. Since the implemented supply chain is cus-
tomer driven, the customers are displayed on the left in the figure, whereas
the suppliers are displayed on the right. The human-created trading agents
are also referred to as manufacturers and these traders own factories, in
which they assemble personal computers out of components procured from
suppliers. Suppliers are controlled by the game and each have an own name,
whereas customers are anonymous. Figure 2.1 shows the main interactions
between the chain entities. Requests for quotation (RFQs) are translated
into offers, of which the accepted ones turn into orders, which lead to ship-
ments. Customers only buy PCs from traders, traders sell PCs to customers
and buy PC components from suppliers, and suppliers sell PC components
to traders. Neither trading, nor messaging takes place within groups of cus-
tomers, traders, or suppliers. Also, the market reports mentioned in the
introduction are periodically sent to traders, providing them information
which could be useful for decision making.

Basus

IMD

Pintel

Macrostar

Mec

Queenmax

Watergate

Mintor

Trader 1

Trader 2

Trader 3

Trader 4

Trader 5

Trader 6

Factory 1

Factory 2

Factory 3

Factory 4

Factory 5

Factory 6

SuppliersManufacturersCustomers

RFQ

Order

Offer

Shipment

RFQ

Order

Offer

Shipment

Data

                                       
Market Report

Periodical summarized

data about the market

Figure 2.1: Schematic overview of the basic concepts of the TAC SCM game.
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This being said, we can take a closer look at the characteristics of the
TAC SCM game. As previously stated, a game consists of 220 simulated
days. These TAC days have a duration of fifteen real seconds each. Every
simulated day, requests for quotation for randomly chosen types of finished
computers are issued by customers, which are controlled by the game itself
and should be considered as given. The demand per market segment is
drawn from a Poisson distribution (using a reverting random walk). Trading
agents are designed to place bids on the RFQs. Customers select from the
trader submitted quotes and buy products, generating profit for the trading
agent.

Traders not only bid on customer RFQs, but they also assemble PCs,
using four components, which can be procured from eight game-controlled
suppliers, which all provide two products on a make-to-order basis. Sending
RFQs to suppliers is constrained to a maximum of five RFQs per product per
supplier, thus yielding a maximum of ten RFQs per supplier. Also, ordering
from suppliers is accompanied with immediate billing for a portion of the
ordering costs, also referred to as down payments. Every trader is able to
handle all components and thus is able to assemble any PC type. However,
the trader factory assembly capacity is constrained. Because of its bidding
and assembly activities, a typical trading agent has to make some daily
decisions about bidding on customer RFQs, about which supplier offers to
accept, and about production and delivery scheduling. Also, trading agents
have to take into account that suppliers may not always be able to supply the
ordered quantities by the due date, resulting in partial or earliest complete
offers. Deliveries always take up at least one day.

In each TAC SCM game, traders compete with each other in a sales mar-
ket for customers and in a procurement market for computer components,
trying to maximize their profits, which is measured using the agents’ bank
account balance at the end of the TAC SCM game. The agents generate
income by selling products and by receiving daily savings interest in case
of a positive account balance. Also, different costs are to be taken into ac-
count, like the costs for banking (interest costs in case of a negative account
balance) and costs for production and warehousing. The latter costs are
fixed throughout the game and are randomly chosen every time a new game
starts. Each trading agent starts with no inventory and an empty bank
account.

2.2 The MinneTAC Trading Agent

The University of Minnesota competes in the TAC SCM game with their
MinneTAC trading agent [2]. This is a multi-component trading agent,
which is built by a team of university students, staff, and partners.
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The MinneTAC trading agent is founded on two pieces of software: the
Apache Excalibur component framework [14] and the AgentWare package.
The framework enables components to be constructed for and used in con-
figurations of working agents, resulting in a highly flexible agent along with
easier development and maintenance. The AgentWare package is distributed
by the TAC SCM game organizers and handles all game server interactions.

The agent is divided into seven main components, which each are im-
portant and have their own roles to fulfill (see figure 2.2). The Oracle com-
ponent embodies a large number of sub-components and is used for market
and inventory models. It also performs analysis and prediction tasks. The
Oracle basically provides the MinneTAC agent with all sorts of information
and predictions, useful in decision making. The Repository component of
the agent is used for facilitating data sharing among the agent’s components.
In order for the agent to work on a TAC SCM server, interaction with the
game server should be dealt with, which is done by the Communications
component. The other four components, i.e., the Sales, Procurement, Pro-
duction, and Shipping components, are responsible for the major decision
processes.

Procurement

Excalibur

Repository

Communications

Production

Oracle

Sales

Shipping

Figure 2.2: Schematic overview of the architecture of MinneTAC.

The trading agent’s sales decision making is largely dependent on regime
identification and prediction [15]. Every day, for each individual market
segment, the current and possible future economic regimes are determined,
using – among others – Gaussians and Markov matrices. Both regime identi-
fication and regime prediction are important tasks of the MinneTAC agent,
because so many decisions are based upon current and expected regimes and
their directly associated price-related forecasts, such as future sales price me-
dians and trends. Regimes are used for both tactical and strategic decisions,
such as product pricing and production planning. Section 2.3.2 discusses the
regime model of the MinneTAC agent in more detail.
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2.3 Regime Identification of the MinneTAC Agent

This section elaborates on economic regimes, which are already mentioned
briefly in section 2.2. First of all, section 2.3.1 tries to come up with a defini-
tion of (economic) regimes and explains the use of regimes in the MinneTAC
agent and the TAC SCM game. Subsequently, section 2.3.2 discusses the
current application of economic regimes in the MinneTAC agent, while sec-
tion 2.3.3 elaborates on a few possible improvements to MinneTAC’s regime
model, leaving the addition of procurement information out of consideration.

2.3.1 Introduction to Regimes

As already stated in section 2.2, the MinneTAC agent uses economic re-
gime identification and prediction for taking tactical and strategic decisions,
which are mainly related to sales. The regimes in the TAC SCM game can
be considered as a set of characteristics which apply to a certain period of
days. The identification and prediction of regimes is done so that different
behavior can be modeled for different situations, which is also referred to
as a switching model. In other words, problems can be solved differently,
depending on their (regime) classification, which possibly yields a higher
accuracy of the agent’s predictions and higher profits.

Regimes are used in multiple contexts, e.g., political regimes and eco-
nomic regimes. In general, a regime refers to a set of conditions. In economic
context, regimes are also referred to as business cycle phases. These phases
are commonly used in macro-economic environments, as is the case in [16],
but in [17], regimes are applied in the micro-economic environment of the
TAC SCM game. This makes sense, since an economic environment is simu-
lated and one can capture (economical) characteristics in economic regimes,
enabling an agent to reason (i.e., make tactical and strategic decisions) based
on certain market conditions.

Over the past decades, research has been done not only related to iden-
tifying and predicting regimes, but also to regime changes. Regime changes
are important events in time series, in which one can obtain strategic ad-
vantage if they are predicted or identified correctly. For instance in 1989,
Hamilton published a paper about an approach to modeling changes in
regimes [18]. Hamilton uses Markov matrices to observe these regime shifts,
by drawing probabilistic inference about whether and when they may have
occurred based on the observed behavior of series.

Finally, in the nineties, a lot of research has been done regarding applying
fuzzy techniques in (macro-economic) regime switching models [19]. For
instance, Nguyen et al. emphasize the importance of detecting economic
regimes and make the observation that regime changes occur gradually [20].
In their research, they claim that regime changes can therefore best be
described using fuzzy values. Even with fuzzy values, it remains hard to
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identify exact moments where regimes change, and thus Nguyen et al. only
succeed partially in their attempt to characterize a gradual regime change
by a single moment of change.

The algorithms implemented in MinneTAC’s regime model, which iden-
tifies and predicts economic regimes based on limited information, are based
on economic theory and some research regarding regime switching models as
previously discussed, but also incorporate some new or adapted techniques.
Furthermore, it is possible to extend the agent’s model by using some tech-
niques discussed briefly in this section. We now continue by elaborating on
MinneTAC’s regime model.

2.3.2 MinneTAC’s Regime Model

The regimes R which are identified in the agent are extreme scarcity, scarcity,
a balanced situation, oversupply, or extreme oversupply [17] (see (2.1)). As
stated by Ketter, five regimes are used instead of three (which are suggested
by economic theory), because in this way outlier regimes can be isolated.
Not only the regime of an arbitrary simulation day is determined, but also
a regime prediction is made every day.

R = {exScar, scar,bal, osup, exOsup} . (2.1)

Currently, MinneTAC’s regimes are identified and predicted solely based
on the normalized mean (sales) price [21]. Regime identification is currently
done offline and online, in other words both out-of-game and in-game. Of-
fer acceptance probabilities associated with given product prices (approxi-
mated using a Gaussian Mixture Model), derived from observable historical
and current sales market data, are clustered offline using the K-Means algo-
rithm [22], which yields distinguishable statistical patterns (clusters), which
are labeled with the proper regimes after statistical research using correla-
tions. Regime probabilities, which are indicative of how market conditions
are, are determined by calculating the normalized price density of all clus-
ters, given sales prices. The current regime is determined online by selecting
the regime with the highest probability given the estimated normalized mean
sales price. The mean price is defined as the mid-range price.

Short-term regime prediction for tactical decision making is done by
using a Markov prediction process. This process is based on the last nor-
malized smoothed mid-range price. To this end, Markov transition matrices,
which are created offline (i.e., not in the game) by a counting process over
past games, are being used. Long-term regime prediction is done by using
a Markov correction-prediction process. This process is almost equal to the
short-term regime prediction, but is based on all normalized smoothed mid-
range prices up and until the previous day, instead of just the last normalized
smoothed mid-range price. Alternatively, regimes can be predicted based on
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exponentially smoothed price predictions, which is useful for estimating the
current regime, as extensively elaborated in [15].

Normalized Mean Price

As both regime identification and prediction are based on normalized sales
prices, this section introduces a mathematical formulation of the normalized
price np for product g, npg, on day d. The normalized price is calculated as

npg =
priceg

assemblyCostg +
∑numPartsg

j=1 nominalPartCostg,j

, (2.2)

using the price and manufacturing costs of g and the number of parts needed
to produce g (priceg, assemblyCostg, and numPartsg, respectively).

For calculation of the estimated normalized mean (mid-range) price,
which is used for regime identification and prediction, yesterday’s expo-
nentially smoothed normalized minimum and maximum prices, ñpmin

d−1 and
ñpmax

d−1 , are used. The calculation of both prices is done the same way. Equa-
tions (2.3) through (2.5) show how the exponentially smoothed normalized
minimum prices are calculated, using a Brown linear exponential smoother
with an α of 0.5:

ñpmin′

d−1 = α · npmin
d−1 + (1− α) · ñpmin′

d−2 , (2.3)

ñpmin′′

d−1 = α · ñpmin′

d−1 + (1− α) · ñpmin′′

d−2 , (2.4)

ñpmin
d−1 = 2 · ñpmin′

d−1 − ñpmin′′

d−1 . (2.5)

Using previous equations, yesterday’s exponentially smoothed normal-
ized price on an arbitrary day d can be calculated using (2.6):

ñpd−1 =
ñpmin

d−1 + ñpmax
d−1

2
. (2.6)

Regime Identification

Since this thesis is about altering the regime identification process, this sec-
tion continues to elaborate on the currently used process to identify regimes
in more detail. As discussed earlier, regime identification is done offline
and online. Offline regime identification is done by analyzing data from
past sales, which is also available during a TAC SCM game and which is
representative enough for future market conditions.

As previously stated, Ketter et al. use a Gaussian Mixture Model
(GMM) for identifying economic regimes. A GMM is used, since it is able to
approximate arbitrary density functions. Also, a GMM is a semi-parametric
approach which allows for fast computing and uses less memory than other
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approaches [23]. In their model, fixed means, µi, which are equally dis-
tributed, and variances, σ2

i , which are chosen so that adjacent Gaussians
are two standard deviations apart [15], are used. The density of the normal-
ized price as calculated in (2.2), p (np), is defined as

p (np) =
N∑

i=1

p (np|ζi) P (ζi) . (2.7)

In this equation, N is the number of Gaussian components. The prior
probability of Gaussian component ζi, P (ζi), is determined by applying the
Expectation-Maximization algorithm [24], which finds the maximum likeli-
hood estimates of the parameters in the model, by repeatedly computing
an expectation of the likelihood and maximizing this expectation. The i-th
Gaussian, p (np|ζi), can be written as shown in (2.8):

p (np|ζi) = p (np|µi ∩ σi) =
1

σi

√
2π

e

[
−(np−µi)

2

2σ2
i

]
. (2.8)

When applying Bayes’ rule to (2.8), the posterior probabilities for each
ζi, P (ζi|np), are obtained by applying

P (ζi|np) =
p (np|ζi) P (ζi)∑N
i=1 p (np|ζi) P (ζi)

, ∀i = 1, 2, . . . , N. (2.9)

For each observed normalized price, a vector of posterior probabilities is
computed, which is used in the K-Means algorithm. This algorithm, as men-
tioned before, is used for defining regimes. Applying the algorithm results in
an N by M matrix with conditional probabilities for each component of the
GMM for each regime, where M is the number of regimes. The density of
the normalized price np dependent on the regime Rk is calculated as shown
in (2.10):

p (np|Rk) =
N∑

i=1

p (np|ζi) P (ζi|Rk) . (2.10)

When applying Bayes’ rule to (2.10), the probability of Rk dependent
on np, P (Rk|np), is obtained by applying

P (Rk|np) =
p (np|Rk) P (Rk)∑M

k=1 p (np|Rk) P (Rk)
, ∀k = 1, 2, . . . ,M. (2.11)

It is shown in [17] that a number of sixteen Gaussians yields good results.
Furthermore, using five regimes instead of three regimes as suggested by
economic theory yields good results. In other words, N = 16 and M = 5.
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After the agent has characterized the different economic regimes offline,
the dominant regime R̂r on arbitrary day d can be identified online, by select-
ing the regime with the highest probability, given the estimated normalized
mean (sales) price ñpd−1, as shown in (2.12):

R̂r s.t. r = argmax ~P (R̂k|ñpd−1). (2.12)
1≤k≤M

Finally, Ketter states one can measure the confidence in the regime iden-
tification by using the entropy [23]. Low entropy values (i.e., close to zero)
indicate a high confidence, while higher values indicate a lower confidence.

Regime Prediction

In the introduction of this section, we introduced three techniques for re-
gime prediction, each of which has – according to Ketter et al. [15] – its
own characteristics and optimal time span to predict regimes for. Exponen-
tial smoothing can be applied to predict today’s regime, whereas a Markov
prediction process can be used for predicting short-term regimes (e.g., up
to ten days in the future). A Markov correction-prediction process is most
suitable for predicting long-term regimes. We define long-term predictions
as predictions for up to twenty days in the future. The upper bound (or
planning horizon h) is set to twenty days, because a new market report be-
comes available every twenty days, possibly leading to new or more accurate
insights in future developments.

It should be noted that current implementations of the regime prediction
framework in the agent differ slightly from the framework as it is explained
in this chapter due to some tweaking by the MinneTAC team in order to
optimize results. However, throughout this thesis, we focus on the model
as it is explained in [15], since this framework describes the major regime-
related prediction algorithms of the MinneTAC trading agent.

Also, in the latest configurations of the agent, there are no specific pre-
dictors assigned to prediction tasks for future days in a specific time span.
Instead, ensemble prediction is used. Here, all implemented predictors pre-
dict for n days into the future (up to planning horizon h). The predictions
are weighted and combined and the correctness of each prediction is eval-
uated daily. These daily evaluations result in weight changes. In general,
the same optimal time spans for each technique are learned as are used in
the framework, but ensemble prediction is a more flexible way of predicting
and allows the usage of more predictors at once. The exact details of en-
semble prediction are beyond the scope of this thesis and therefore we focus
on the basic assignment of predictors when elaborating on the prediction
framework.
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Exponential Smoother Process

The exponential smoother regime prediction process is, according to Ketter
et al., more reactive to the current market condition than any other method.
This statement makes sense, since the exponential smoother process takes
yesterday’s information (normalized mean sales price) as input. This in-
formation is corrected (smoothed) with information on preceding days to
reduce volatility.

The prediction process calculates a trend, t̃r
min
d−1, in the minimum nor-

malized mean sales price by using (2.3) and (2.4). The calculation is shown
in (2.13), where β is set to 0.5:

t̃r
min
d−1 =

β

1− β
·
(
ñpmin′

d−1 − ñpmin′′

d−1

)
. (2.13)

The exponentially smoothed maximum normalized trend, t̃r
max
d−1 , is cal-

culated in a similar way. Using the minimum and maximum trends, the
mid-range trend of the sales price (t̃r

np
d−1) can be calculated as

t̃r
np
d−1 =

t̃r
min
d−1 + t̃r

max
d−1

2
. (2.14)

Using yesterday’s value and the mid-range trend of sales prices, one
can estimate the value of sales prices n days in the future in a way shown
in (2.15), where h is the planning horizon:

ñpd+n = ñpd−1 + (1 + n) · t̃rnp
d−1, ∀n = 0, 1, . . . , h. (2.15)

Recall that this horizon has a maximum of twenty days, and since the
exponential smoothing process can be applied best for predicting today’s
regime, h is equal to zero for this process. Finally, the probability for each
regime (given np) for n days in the future, P

(
R̂k|ñpd+n

)
, can be calculated

similar to (2.11):

P
(
R̂k|ñpd+n

)
=

p
(
ñpd+n|R̂k

)
P (Rk)∑M

k=1 p
(
ñpd+n|R̂k

)
P (Rk)

, ∀k = 1, 2, . . . ,M. (2.16)

Here, the density of ñpd+n dependent on regime R̂k is calculated us-
ing (2.10) by marginalizing over the individual Gaussians and cluster cen-
ters, and thus we obtain

p
(
ñpd+n|R̂k

)
=

N∑
i=1

p
(
ñpd+n|ζi

)
P (ζi|Rk) . (2.17)
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Markov Process

Making short-term and long-term regime predictions can be done using
Markov prediction and correction-prediction processes. In contrast to the
exponential smoother process where future prices are predicted, resulting
indirectly in predictions of future regimes, regimes are predicted directly.
Also, Markov processes are less responsive to current market situations, be-
cause they also take into account a history of events.

For short-term regime predictions, a Markov prediction process is used.
This process is based on the last price measurement and on a Markov tran-
sition matrix, referred to as T (rd+n|rd). The latter matrix is created by
means of a counting process on offline data and contains posterior probabil-
ities of transitioning to regime rd+n on day d+n (i.e., n days in the future),
given rd, which is the current regime.

Note that for Markov processes, we introduce a new symbol for denoting
regimes, r, to emphasize that we are not looking at the individual regimes
in the way we were looking at them until now, because there is a focus shift.
Now, the regimes represent rows and columns in a Markov transition matrix
and we use probability vectors combined with transition matrices, instead
of single regime probabilities.

Ketter et al. distinguish between two types of Markov predictions: n-day
prediction and repeated one-day prediction. The first type is an interval pre-
diction, where for each day n up to planning horizon h a Markov transition
matrix is computed offline (per product, or at whatever level of detail the
regime model is defined), whereas the second type only needs one Markov
transition matrix (per product). This matrix is repeated n times up to
planning horizon h.

The calculation of the n-day prediction for n days ahead is performed as

~P (r̂d+n|ñpd−1) =∑
rd+n

. . .
∑
rd−1

{
~P (r̂d−1|ñpd−1) · Tn (rd+n|rd−1)

}
, ∀n = 0, 1, . . . , h, (2.18)

where the previous (identified or predicted) posterior regime probabilities
dependent on the normalized mean sales prices are multiplied with the ap-
plicable Markov transition matrix.

Hence, predictions for today (i.e., n is equal to zero) are based on the
regime probabilities resulting from the regime identification of day d − 1,
while predictions for n days in the future are done recursively. The regime
probabilities resulting from identification, i.e., ~P (r̂d−1|ñpd−1), are obtained
by rewriting (2.16), as is shown in (2.20) and (2.21). Note that we first need
to rewrite the density of ñpd+n dependent on R̂k, which is defined as shown
in (2.17), to ñpd−1 dependent on R̂k. The latter density is used in (2.20)
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in order to obtain the posterior regime probability. This density of ñpd+n

dependent on R̂k is calculated as

p
(
ñpd−1|R̂k

)
=

N∑
i=1

p
(
ñpd−1|ζi

)
P (ζi|Rk) , (2.19)

P
(
R̂k|ñpd−1

)
=

p
(
ñpd−1|R̂k

)
P (Rk)∑M

k=1 p
(
ñpd−1|R̂k

)
P (Rk)

, ∀k = 1, 2, . . . ,M, (2.20)

~P
(
r̂d−1|ñpd−1

)
=
{

P
(
R̂1|ñpd−1

)
, . . . , P

(
R̂M |ñpd−1

)}
. (2.21)

The same principles apply to the calculation of the repeated one-day
prediction, as shown in (2.22). However, as we already explained, only
one transition matrix is used, T0 (rd|rd−1), which is repeated n times for
predictions of n days in the future.

~P (r̂d+n|ñpd−1) =∑
rd+n

. . .
∑
rd−1

{
~P (r̂d−1|ñpd−1) ·

n∏
t=0

T0 (rd|rd−1)

}
, ∀n = 0, 1, . . . , h. (2.22)

There is an assumption in the repeated one-day prediction, i.e., in a time
span of multiple days, the transition probabilities remain the same. A short-
coming of repeating matrices is the fact that the distribution of probabilities
in the transition matrices will converge to fixed values after repeating the
matrix a number of times. In other words, eventually a stationary distri-
bution will emerge. For one-day predictions, this will occur sooner than
for n-day predictions, simply because for every prediction for n days up to
planning horizon h, the matrix should be repeated n times, whereas the
n-day predictions have different matrices for each prediction and therefore
no repeating occurs. Because of these observations, we prefer the n-day
predictions over the repeated one-day predictions.

Long-term predictions are made using a Markov correction-prediction
process. The latter process is almost similar to the Markov prediction pro-
cess we already discussed. The difference is that the long-term prediction
process is modeled based on the entire history of prices, instead of just the
last price measurement.

Hence, we need to extend the probability of regime r̂d−1 dependent on
ñpd−1 to also incorporate all previous ñp values. This correction is done by
applying a recursive Bayesian update to (2.19) and (2.20), as shown in (2.23)
and (2.24).
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P
(
R̂k|

{
ñp1, . . . , ñpd−1

})
=

p
(
ñpd−1|R̂k

)
P
(
R̂k|

{
ñp1, . . . , ñpd−2

})
∑M

k=1 p
(
ñpd−1|R̂k

)
P
(
R̂k|

{
ñp1, . . . , ñpd−2
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Here, the regime probabilities are calculated while taking into account
the predicted probabilities of yesterday (d− 1) at the day before yesterday
(d− 2) and yesterday’s probability density of ñpd−1 dependent on R̂k. This
density is calculated by applying (2.19).

Then, predictions for today (i.e., n is equal to zero) are based on the
corrected regime probabilities resulting from (2.24) on day d− 1, while pre-
dictions for n days in the future are done recursively. We define the n-day
variant of the Markov correction-prediction process as

~P
(
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{
ñp1, . . . , ñpd−1

})
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. . .
∑
rd−1

{
~P
(
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{
ñp1, . . . , ñpd−1

})
· Tn (rd+n|rd−1)

}
,

∀n = 0, 1, . . . , h. (2.25)

The same principles apply to the calculation of the repeated one-day
correction-prediction, as shown in (2.26). Again, the difference is the usage
of the Markov transition matrices:

~P
(
r̂d+n|

{
ñp1, . . . , ñpd−1

})
=∑

rd+n

. . .
∑
rd−1

{
~P
(
r̂d−1|

{
ñp1, . . . , ñpd−1

})
·

n∏
t=0

T0 (rd|rd−1)

}
,

∀n = 0, 1, . . . , h. (2.26)

Note that the Markov transition matrices which are being used in (2.25)
and (2.26) (Tn (rd+n|rd−1)∀n = 0, 1, . . . , h and T0 (rd|rd−1), respectively) are
the same matrices as used in (2.18) and (2.22). Furthermore, the prediction
algorithms used are similar as well.

Final Remarks on Prediction

For each of the discussed processes, the future dominant regime can still be
determined as done with regime identification in (2.12), i.e., by selecting the
regime with the highest probability, given certain conditions regarding the
estimated normalized mean (sales) price.

Furthermore, where needed, the (prior) regime probabilities for the first
day of a game are set to 100% extreme scarcity, since this is the most
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intuitive regime when the game starts, because no inventories of finished
products exist yet.

Finally, Ketter states one can evaluate regime predictions by calculating
a percentage on the number of times the correct dominant regime has been
predicted, as well as the number of times a regime change has been predicted
correctly within plus or minus two days [23]. These methods are based on
discrete values, i.e., the dominant regimes. Ketter uses the Kullback-Leibler
(KL) divergence to determine the closeness of all individual predicted regime
probabilities (which are continuous) to the realized regime probabilities.
Also, the prediction error is estimated using a Monte Carlo method.

Price Prediction

The predicted regimes up to h days in the future, which is done using equa-
tions introduced in the previous section, can be used to predict future price
density distributions. Equation (2.27) shows a way to create a price predic-
tion distribution for n days ahead, based on the predicted regimes, given a
history of prices:

p
(
n̂pd+n|

{
ñp1, . . . , ñpd−1

})
=

M∑
k=1

p (np|Rk) P
(
R̂k,d+n|

{
ñp1, . . . , ñpd−1

})
, ∀n = 0, 1, . . . , h. (2.27)

Here, P
(
R̂k,d+n|

{
ñp1, . . . , ñpd−1

})
is an element of a resulting prob-

ability vector of regime predictions in the previous section. Furthermore,
p (np|Rk) represents the density of the normalized price np dependent on
the regime Rk and is obtained using (2.10).

Online, the price prediction is estimated by sampling over np from 0.00
to 1.25 with an increment of 0.01, after which the distribution is discretized
and normalized, so that its values sum up to one. Then, this distribution
can be used to calculate for instance a mean distribution, or the 10%, 50%,
and 90% percentiles used for predicting price trends. Also, the customer
offer acceptance probability can be calculated using the cumulative density
function of the price density distribution. The exact calculation is beyond
the scope of this thesis.

2.3.3 Determining Regimes Differently in MinneTAC

Because MinneTAC’s regime model is to be altered in this thesis, we take a
look at fuzzy set theory, which has already been used in the past for mod-
eling the identification of (changes of) economic regimes [20]. The existing
regime model of the MinneTAC trading agent does not use fuzzy set the-
ory. Hence, not only procurement information, but also fuzzy sets would be
an appropriate extension to the regime model. While fuzzy sets are used
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to express the uncertainty of a definition, normal sets are used to express
the uncertainty of an occurrence. The regime determining problem clearly
can be classified as a problem concerning uncertainty of a definition. Fuzzy
set theory can be applied to two key components of regime identification
and prediction: the determination of the clusters representing the different
economic regimes and the regime determination based on these clusters.

While currently in the MinneTAC agent days are being classified to be-
long to a certain regime using probabilities and sets, game days can also be
classified more precisely using fuzzy sets and membership functions, as intro-
duced by Zadeh in 1965 [25]. In contrast to probabilities, these membership
functions do not express the likelihood of regimes, but the degree of truth.
With the current regime identification (as well as prediction), the regime of
a certain day is assumed to be the regime with the highest likelihood, but
when fuzzy set theory is applied, multiple regimes can partially apply to
a single day, making the number of possible regimes infinite and the agent
more accurate. This also adds more realism to the regime model, since in
real life, economic regimes transition gradually, so that on an arbitrary day
multiple regimes can hold.

When using fuzzy sets, the current dominant regime can be characterized
as a fuzzy set Rr in the set containing all regimes R which has a membership
function as displayed in (2.28):

µRr : R → [0, 1] . (2.28)

Membership functions can be of various types, for example triangular,
trapezoidal or Gaussian. An example of a fuzzy set representation of regimes
is shown in (2.29) (compare (2.12) and its resulting value). In this example,
the identified or predicted dominant regime have a degree of membership
of 50% in the oversupply regime and a 25% membership of the extreme
oversupply regime:

Rr = {0, 0, 0, 0.5, 0.25} . (2.29)

Implementing a fuzzy set representation of regimes would most likely
require a rebuild of a significant part of the agent, since all decisions are
made based on one identified or predicted regime, i.e., a crisp formulation of
a regime. However, with Takagi-Sugeno fuzzy models, such a crisp output
is also possible.

It is also possible to make regime definitions less crisp, using fuzzy
C-Means clustering [26, 27]. Like the currently used K-Means algorithm,
the proposed algorithm optimizes the cluster centers in a collection of data
points (posterior probabilities for each Gaussian ζi in case of the MinneTAC
agent) by calculating the distance of each data point to the cluster centers,
using a distance measure like the Euclidian distance. The algorithm which
is currently used does not allow data points to belong to two or more clus-
ters with a certain membership, while the fuzzy C-Means algorithm does.
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We believe that the agent could benefit from changing K-Means clustering
into fuzzy C-Means clustering, since clusters (and their cluster centers) are
defined more accurately, because important information, i.e., the extent to
which data points match a certain cluster, is kept instead of simplified. Fur-
thermore, the proposed clustering algorithm is more stable than K-Means,
because outliers do not influence (offset) cluster centers much.

As shown in this section, fuzzy C-Means clustering and fuzzy sets can
be used to obtain a new definition and classification of regimes. Because of
the improved accuracy in identifying and determining regimes when apply-
ing the methods elaborated, the MinneTAC trading agent can benefit from
implementing fuzzy sets and fuzzy C-Means clustering.

2.3.4 Regimes Summary

In this section, we have introduced (economic) regimes. After discussing
some related work, we have discussed the regime model of MinneTAC, which
identifies and predicts economic regimes in a TAC SCM game based on
normalized mean sales prices, extensively. Finally, an adaptation of the
regime model is suggested based on related work, i.e., introducing fuzzy set
theory.

2.4 Competitors

MinneTAC is not the only agent competing in the TAC SCM game. This
section elaborates on six agents which performed well at the TAC SCM
Finals of 2007 and/or 2008 [28, 8], based on the results of a survey conducted
by Collins et al. [2] and official publications about the agents. Each of the
agents has different approaches to trading in the TAC SCM game.

The TacTex trading agent [3] of the University of Texas is discussed
in section 2.4.1. Section 2.4.2 elaborates on University of Michigan’s Deep-
Maize agent [4]. The CrocodileAgent [29], which is created by the University
of Zagreb, is discussed in section 2.4.3. Subsequently, sections 2.4.4 and 2.4.5
discuss the PhantAgent of the University Politehnica of Bucharest [5] and
the CMieux agent of the Carnegie Mellon University [7], respectively. Fi-
nally, section 2.4.6 describes the main characteristics of the Mertacor trading
agent of the University of Thessaloniki [6].

2.4.1 TacTex

The TacTex agent uses machine learning algorithms to learn from historical
(market) data. TacTex uses both offline bootstrapping and online learn-
ing, which means the agent can adapt to changing situations. TacTex has
three predictive modules, two decision-making modules and two methods of
adapting to opponent behavior based on past games [3].

22



The decision-making modules try to identify optimal behavior with re-
spect to the predictions. These two models are called the Supply Manager,
which handles all planning related to component inventories and purchases
(i.e., it decides what and how to order), and the Demand Manager, which
is used for planning related to computer sales and production.

In order to be able to perform their optimization tasks, the managers use
three predictive models. The first model is the Supplier Model, which pre-
dicts the prices offered by suppliers in response to RFQs. The second predic-
tive model which is used by the managers is the Demand Model. This model
predicts the future demand using a Bayesian approach. Finally, the third
model enabling the optimization tasks of the two decision-making modules,
is the Offer Acceptance Predictor. This model enables the Demand Manager
to predict the orders that will result from the offers it makes.

TacTex’s predictive modules’ predictions are based on observations on
the current game. These predictions can be adapted by using historical
data. The agent uses data of old games in which their current opponents
were represented. The TacTex trading agent adapts predictions both in the
initial component orders, as well as in the end-game sales, since making
precise predictions is hard in begin-of-game and end-of-game scenarios, thus
requiring some adaptation.

2.4.2 DeepMaize

The DeepMaize agent is designed in such a way, that it tries to optimize
the estimation of the marginal values for each finished product and compo-
nent input by using predictions about market conditions and constraints on
production.

Optimization of constraints posed by the TAC SCM game on a realtime
basis is done by the agent, by using third party optimization packages. As
stated in [4], both centralized, high-level optimization and low-level opti-
mization is used. The high-level optimization is used for a long-term pro-
jected production schedule and accounts for the major constraints, without
worrying about the details. The low-level optimization decides about actions
in the individual markets and keeps all the details in mind.

The DeepMaize agent mainly estimates the daily demand (defined as
the number of customer requests for quotation) and tries to predict sales
prices, based on historical data to which a k-Nearest-Neighbor algorithm
has been applied. This data is split into two data sets; the first containing
data on previous tournament games, and the second containing data on self-
played games. Predictions are optimized by applying a logarithmic scoring
rule.

The results of the survey presented in [2] indicate that the DeepMaize
agent, in contrast to the machine learning approach of the MinneTAC and
TacTex trading agents, mainly relies on empirical game-theoretic analyses
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to be able to make predictions, which requires the conduction of a great
many of experiments.

2.4.3 CrocodileAgent

The CrocodileAgent is based on the JADE [30] framework, which is a suit-
able Java-based framework for large-scale multi-agent simulations. Also,
CrocodileAgent’s decisions are taken with use of the IKB model [31], which
is a strategy design framework for electronic trading markets, consisting of
three layers, each of which the first letter of their name is included in the
acronym IKB: the Information layer containing collected data from the en-
vironment, the Knowledge layer containing extracted knowledge from the
previous layer, and finally the Behavioral layer, which is responsible for
reasoning and decision making.

2.4.4 PhantAgent

The architecture of the PhantAgent [5], created by the University Poli-
tehnica of Bucharest, is divided into three inter-dependent modules: the
Computer Module, Component Module, and Factory Module. PhantAgent
does not use optimization algorithms for subproblems to be solved, but
uses heuristics, since the different modules are inter-dependent, which may
lead to sub-optimal overall solutions, even though the subproblems are op-
timized. Characteristic for the PhantAgent is the fact that it does not use
complicated algorithms throughout the agent, but it uses simple heuristics
and assumptions instead.

The first module, the Computer Module, is responsible for handling the
computer sales in a TAC SCM game. Therefore, the module should decide
which computers should be offered for selling at what price. Offer prices are
calculated using the best highest price of the past three days, adjusted with
a factor depending on current factory utilization. The PhantAgent tries to
utilize the factory to its maximum if the profit is positive.

The Component Module handles component procurement as well as com-
ponent cost estimation tasks. For instance, there should always be enough
(but not too much) stock components available for the Factory Module to
process. Also, procurement costs should be kept as low as possible.

Finally, allocating computer production is performed by the third mod-
ule; the Factory Module. According to [5], the module handles the assembly
factory and is responsible for fulfilling existent customer orders, producing
computers in advance, deciding what customer RFQs could be delivered on
time, and estimating how crowded the factory is.
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2.4.5 CMieux

The results of the TAC SCM Finals of 2007 and 2008 show that the CMieux
trading agent [7] performs well. In their paper, in which the CMieux agent
is discussed on a high level, Benisch et al. state that the trading agent
outperforms other TAC SCM contestants significantly in procurement and
performs about as good as other agents in bidding. One thing that dis-
tinguishes the CMieux agent from other agents, is that this trading agent
continuously re-evaluates its (low-level and high-level) strategies, whereas
a lot of other participating trading agents do not perform certain actions
continuously, but only once in a while.

The trading agent is supported by five modules. The first module is
called the Forecast Module, which predicts prices of components and the
future customer demand, as well as component arrivals. These predictions
are made based on new, daily information gathered from the server (for
instance customer requests for quotation or observed delays). Demand fore-
casting is done using a Poisson distribution, with which the mean and trend
of the demand are predicted using linear least squares fit. Price prediction
is calculated the same way for selling prices. Purchasing prices are predicted
differently with a Nearest-Neighbor algorithm.

The forecasts are used by the Strategy Module, which takes high-level
strategic decisions. The module provides functionality to decide which cus-
tomer requests for quotation should be targeted on an arbitrary game day,
as well as which finished products the agent should try to sell on the cur-
rent day (also referred to as target demand and desired to promise products,
respectively).

The third module is called the Procurement Module. This module de-
termines which supplier offers to accept on an arbitrary day (i.e., selecting
a good subset of promising offers) using a rule-based model. The expected
offer costs of the suppliers are minimized by the module, by breaking the
target demand into orders, which are, particularly in case of low prices on an
arbitrary day, not necessarily related to game days in the near future, but
could also be related to expected demand many days ahead. Also, an order
can be divided over multiple suppliers in order to minimize the costs. The
module is also responsible for sending requests for quotations to suppliers.

The main task of the Bidding Module is to respond to customer requests
with price quotes, or in other words, to place bids. Bidding for customer or-
ders is modeled with probability distributions, which are learned offline with
a distribution tree. Each product type is handled separately and in-game,
the bidding tasks are narrowed down to a continuous knapsack problem.

The last module of the CMieux agent is called the Scheduling Module.
This module is responsible for generating a tentative tardiness minimizing
assembly schedule for a couple of days ahead using a greedy algorithm, after
sorting orders (using heuristics).
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2.4.6 Mertacor

The Mertacor trading agent is a module-based agent, which relies on a com-
bination of operations research techniques, heuristics, adaptive algorithms,
and statistical modeling techniques. Its modules represent four main facets
of the TAC SCM game and show some similarities between the modules of
PhantAgent and CMieux.

The Inventory Module handles all inventory-related tasks. Mertacor uses
an assemble-to-order inventory management technique, where components
(and not assembled products) are kept in stock and a certain inventory level
is maintained at all times for each component. Chatzidimitriou et al. state
that this technique proves to be suitable in environments where assembly
times are significantly smaller than replenishment times [6], which is the
case in TAC SCM games. The Inventory Module is assigned to decide which
component has to be replenished at a certain time.

The Procuring Module gets its orders from the Inventory Module. Al-
though the latter module is responsible for maintaining healthy inventory
levels, the task of the former module is to buy components for low prices.
However, low prices do not have a high priority on the the first two days
in a TAC SCM game. Here, the Procuring Module sends RFQs for com-
ponents and procures expensive components, in order to fill inventories so
that production can start immediately. Cheap components are procured on
other days by means of RFQ probing.

The Factory Module is responsible for a number of tasks. First of all,
the module generates production and delivery schedules on a daily basis.
Furthermore, the module adjusts inventory levels and the available factory
cycles. The Factory Module implements a simulator, which simulates the
entire factory up to a few days into the future, so that decisions can be made
which may effect the future, such as bidding by the Bidding Module.

The latter module, the Bidding Module, cooperates with the Factory
Module. For instance, the Bidding Module is responsible for placing bids
(offers) on customer RFQs. In order to maximize the factory performance,
the bidding module places more offers on RFQs than the factory can han-
dle, because not all offers are accepted. Bidding is done based on machine
learning techniques, and in case a predictive model fails due to unexpected
market changes, Mertacor switches back to simple mechanisms.

2.4.7 Summary Competitors

In this section, architectures and decision logic of several competitors have
been discussed. Table 2.1 summarizes on these two aspects of the discussed
agents.

All agents are more or less module-based. However, agents differ in the
division of the tasks to be fulfilled daily into modules, depending on their
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Agent Architecture Decision logic
TacTex Predictive, adaptive, and

decision-making modules
which distinguish between
demand and supply

Machine learning: off-
line bootstrapping and
online learning

DeepMaize High-level and low-level
modules

Empirical game-theo-
retic analyses

CrocodileAgent IKB model Current game situa-
tions

PhantAgent Product-oriented modules,
i.e., computers, compo-
nents, and factories

Simple heuristics and
assumptions

CMieux High-level strategy, low-
level forecast, scheduling,
procurement, and bidding
modules

Heuristics, rules, sta-
tistical modeling tech-
niques, continuous re-
evaluation of strategies

Mertacor Modules for the main
facets of TAC SCM, i.e.,
inventories, procurement,
factories, and bidding

Operations research
techniques, heuristics,
adaptive algorithms,
statistical modeling
techniques

Table 2.1: Summary of competitors.

focus. First of all, the DeepMaize agent mainly distinguishes between high-
level and low-level optimizations, whereas TacTex distinguishes between
demand-related and supply-related modules. The CrocodileAgent is built
based on layers with different levels of abstraction using the IKB model.
The PhantAgent is product-oriented, i.e., there are computer, component
and factory modules. The CMieux agent distinguishes between a high-level
strategy module and the low-level forecast and scheduling modules, apart
from the procurement and bidding modules. Finally, the modules of the
Mertacor agent are mainly based on main facets of the TAC SCM game.
All architectures of the discussed agents have at least some resemblance to
the MinneTAC architecture.

The agents not only have different modules, but they also differ in the
way decisions are made. The TacTex agent is based on machine learning
algorithms to learn from historical (market) data, whereas the DeepMaize
agent mainly relies on empirical game-theoretic analyses to be able to make
predictions. The PhantAgent is characterized by the fact that it does not use
complicated algorithms throughout the agent, but that it uses simple heuris-
tics and assumptions instead. One thing that distinguishes the CMieux
agent from other agents, is that this trading agent continuously re-evaluates
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its (low-level and high-level) strategies, whereas a lot of other participating
trading agents do not perform certain actions continuously, but only once in
a while. The Mertacor agent behaves similar to PhantAgent and CMieux.

2.5 Related Work Summary

In this chapter, we have discussed the main specifications of the TAC SCM
game. In this game, six artificial trading agents compete on a simulated
computer market for 220 days. Their tasks are to compose computers out
of procured components and to sell these products to customers. The basic
concepts of the game are customers, suppliers, and manufacturers (i.e., trad-
ing agents) together with their factories. The game supplies each of these
concepts – except for the trading agents – and generates requests. Also, a
market report comes out every twenty game days and other functionality
such as banking is handled by the game as well.

Furthermore, we have elaborated on the MinneTAC trading agent in
detail. Especially its regime model, which is to be altered in this research,
has been discussed extensively. The regime model is currently based on
sales information. Regimes are identified offline, after which identification
and prediction can be done online. These predictions are used for price
trend prediction.

Also, some general improvements to the regime model have been sug-
gested. Because of the improved accuracy in identifying and determining
regimes when applying the methods elaborated on, the MinneTAC trading
agent can benefit from implementing fuzzy sets and fuzzy C-Means cluster-
ing. Multiple regimes can hold at once, which is more realistic, since regimes
transition gradually.

Finally, the architecture and decision making processes of a few competi-
tor agents have been discussed shortly, in order to illustrate the differences
and similarities between the competitors and the MinneTAC agent. Al-
though a wide variety of architectures and decision making methods are
used, most of the agents show at least some resemblances to the MinneTAC
agent.
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Chapter 3

Identifying Promising
Procurement Variables

In order to be able to research improvements on MinneTAC’s current meth-
ods for regime identification and also regime prediction, we need – apart
from the current required variables such as the normalized mean sales price
– some procurement variables which are directly or indirectly dependent on
the agent’s behavior. These procurement variables are to be incorporated
into the current methods. This chapter continues with identifying poten-
tially good variables extracted from the procurement data available in the
data set described in section 3.2, which are evaluated using MATLAB to apply
feature selection.

3.1 Feature Selection

In our research, we need to select the most relevant procurement variables
from our data set, or in other words, the variables which have the high-
est relevance to the target variable. This process is referred to as feature
selection, variable selection, or feature extraction. About this topic, a lot
of research has been published. This survey discusses several methods of
feature selection briefly, based on an extensive book about the foundations
and applications of feature selection, written by Guyon et al. [32], as well as
an article on this topic by Guyon and Elisseeff [33].

According to Guyon et al., variable selection can be done in many differ-
ent ways. One can divide the approaches into filter and wrapper algorithms.
Wrappers analyze the variable importance by running the model of subject
in all kinds of configurations and by evaluating it with some metric and
therefore could be computationally intensive, while filters do not run the
model in a large number of configurations. For filters, a distinction can
be made between information theory-based, correlation-based, and decision
tree-based approaches. One can divide wrappers into algorithms designed to
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give optimal results, sequential selection algorithms, and stochastic search
algorithms.

Many filters that use information theoretic criteria rely on empirical es-
timates of the mutual information between each variable and the target [33]
by using their probability densities. It is harder to apply these approaches to
continuous variables than to discrete variables due to the fact that with con-
tinuous variables, the densities cannot be estimated from frequency counts,
and therefore, Guyon et al. advise to discretize continuous variables when
applying information theory-based approaches like the Kullback-Leibler di-
vergence (information gain). This should be taken into account if we decide
to apply certain approaches.

For correlation-based variable selection algorithms, measures like (Pear-
son) correlation and variance are used, as well as for example the T-test.
Correlation is used to measure dependencies, and one can estimate the pre-
dictive power of certain variables with the error rate.

One final filter approach is the usage of decision tree-based algorithms,
such as random forests or even only a decision tree. These algorithms can be
evaluated using measures like entropy, separability, and Gini-index. Some-
times, decision tree-based approaches are classified as a third main variable
selection approach; the embedded methods [33]. This is due to the fact that
these methods are embedded in the model to be evaluated.

As stated earlier, wrapper approaches could be computationally intensive
and there are several different types of wrapper approaches. First of all,
some algorithms are useful when one wants to obtain optimal results and
the computation time is less important, such as the exhaustive search and
the branch and bound algorithms. Furthermore, wrappers are most likely
to be based on machine learning techniques, such as genetic algorithms and
simulated annealing.

In their papers, Andrews et al. [34, 35] analyze the relevance of some sales
and procurement variables in the TAC SCM game. Andrews et al. analyze
how much certain variables can predict the winner of a TAC SCM game (i.e.,
the agent which has the largest bank account when the game ends). In their
approach, they use the information gain metric to capture the amount of
information gained about an agent’s performance when knowing its value for
some feature. The metric does not indicate which variables are responsible
for a better performance, but do indicate which variables differentiate the
winning agents. Correlation is not causation, however, and thus all that can
be concluded is which variables are worth further analysis.

This is exactly what we need in our research, since we only need to know
which procurement variables most likely could improve MinneTAC’s regime
identification (and prediction), just to narrow our scope. Wrapper (and
also embedded) methods are not preferred, since implementing changes and
running games is time consuming. Filter methods are less time consuming
than wrapper methods and are relatively easy to perform. Most likely, there
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are better methods to perform feature selection, which perhaps might not
even need the discretization of variables, but, as stated by Andrews et al.,
the information gain is a general metric which gives us some valuable insight
in the (variables of the) TAC SCM game, and therefore – also due to time
constraints of this thesis – we use this metric as well. The details of the
information gain metric are described in section 3.4.

3.2 Data Set

Before we can continue with identifying promising procurement variables, we
need to introduce a data set, which contains historical data on games. This
data set can not only be used for the identification of promising procurement
variables, but can also be used for experiments later on.

The MinneTAC software for analyzing server logs (currently in develop-
ment at revision 5403) is able to extract useful and valuable data from the
server logs and converts it into an analyzable format, which can be used for
research on improvements to the MinneTAC agent, for instance for measur-
ing the performance of changes made in the agent. Our research does not
only require some general game data, but also regime-related information
about sales as well as procurement to be stored. In order to fulfill this need,
we have updated the MinneTAC log software and we have created a couple
of scripts to interact with the software, which filter the desired information
from the game logs stored on the game servers and convert this into a read-
able MATLAB [36] format. With this data, it is possible to perform different
kind of analyses, such as determining statistical values like minimum, max-
imum and mean, or to deduce new data. Some data might not be needed
in our current research, but is still suitable for analyses in future research
projects regarding the TAC SCM game and/or the MinneTAC agent, in
particular procurement-related research.

This section continues with discussing the different types of data stored
in the data set: general data, sales data, and procurement data are discussed
in sections 3.2.1, 3.2.2, and 3.2.3. Since the trading agents in a TAC SCM
game only have little information readily available, section 3.2.4 elaborates
on online and offline data. Also, we have stated that the data set contains
data on past games, and therefore we need to specify which games are stored
in the data set. This is elaborated on in section 3.2.5. Finally, the contents
of the data set are summarized in section 3.2.6.

3.2.1 General Data

Only little general data is stored on each game in the data set (see figure 3.1).
This data includes player (i.e., trading agent) data, banking data and mar-
ket report data. The trading agents competing in the game are identified
through their unique names, which are stored in PlayerList. Banking data

31



Figure 3.1: Contents of the general data.

on each trading agent, such as statistics on the account balances, is stored
in BankAvg and BankStatus. The largest part of the general data is periodic
market report data (MarketReport), which includes for example production
prices, the number of products ordered, and suppliers’ production capacity.

3.2.2 Sales Data

As stated in the introduction of this section, the data set contains regime-
related information about sales. Figure 3.2 shows the sales information
attributes in the data set.

All offers made to customers and all orders made by customers are stored
in AllOffers and AllOrders respectively. Data is generated for the analysis
of different market segments. Several offer and order attributes are stored,
such as quantities, prices, reserve prices, lead times, etcetera. In the TAC
SCM game, the reserve price is equal to the maximum price one is willing to
pay. Because the negotiation between agents and customers is modeled using
requests for quotation (RFQ), several RFQ-related attributes are stored as
well in RFQCount and RFQs. Some related information about the total
demand for a product and the total number of orders on an arbitrary day
is included in Demand and Orders.

Not only demand, offer, and order information can be useful as sales in-
formation, but also data on deliveries, production cycles needed and finished
inventories. This data is stored in Deliveries, ProdCycle, and FinishedInv.

3.2.3 Procurement Data

All procurement information stored in our data set contains identification
numbers of suppliers (suppID), since all procurement-related actions and
information flows involve suppliers. Most of the data also contains identi-
fication numbers of the manufacturers (trading agents) involved, which are
labeled with manID. Some data is only applicable to suppliers and have no
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Figure 3.2: Contents of the sales data.

direct link to trading agents. Figure 3.3 visualizes the available procurement-
related MATLAB files.

First, we discuss the data concerning both suppliers and manufacturers.
The daily order ratios for components per manufacturer and supplier are
stored in OrderRatio. These ratios, which are calculated daily, are defined
as the total ordered quantity of a component on an arbitrary day divided
by its total offered quantity. Also, all component orders and offers placed in
a game are stored in the data set, giving the user insight in (among others)
quantities, prices, and the type of orders and offers. This data is stored in
SuppOrders and SuppOffers. Other demand-related data on components in
the TAC SCM game can be found in SuppDemand and SuppRFQs, which
contain information about the total daily demand of components per manu-
facturer, supplier and component, and about requests for quotations respec-
tively. The data stored in Reputation represents the daily manufacturer’s
reputation with a supplier per manufacturer and supplier.

The data set also contains other information about suppliers; more
specifically, about each supplier’s two production lines. First of all, the
capacity of each supplier is recorded in SuppCap. Furthermore, quanti-
ties are stored per supplier per production line (SuppQty), as well as the
inventory levels (SuppInv). At the moment, the MinneTAC software for
analyzing server logs (revision 5403), is not able to identify supplier prices
due to persistent bugs and therefore, these prices are not included in the
data set.
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Figure 3.3: Contents of the procurement data.

Note that most of the data in the data set is bound to be a positive,
real number. Occasionally, we use ones and zeros to denote properties (e.g.,
orders and offers, which can either be partial, earliest, or full), representing
true and false, respectively.

3.2.4 Online and Offline Data

The data described in the previous sections is not always available to a
trading agent during a TAC SCM game. In other words, one can distinguish
between online and offline data in this data set. An environment similar to
the TAC SCM game in which every player (link in the supply chain) would
have perfect knowledge of the market conditions and all other players is
very unrealistic and highly doubtful. We define online data as the available
information to a trading agent which is visible during a game and thus
the only information directly useable for identification and prediction of
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regimes, the results of which can subsequently be incorporated into all kinds
of decision making processes regarding, for instance, sales and procurement.

The fact that only a small part of the information is available online,
does not mean this online information contains the best identifiers for (for
instance) market conditions. It is possible that offline information is more
valuable. However, if one wants to use offline information as input for pre-
dicting models, online approximators should be developed to estimate the
desired data, since it is clearly not possible to use offline data online.

Certain (sales related) data is always available to the agent during a
TAC SCM game [13]. First of all, the agent knows the entire history of its
own received RFQs and orders. Furthermore, each day the agent receives for
each PC type the minimum and maximum price of the previous day. Also, a
market report is available to the agent, which is generated once every twenty
days, containing aggregated information about the past twenty days. For
each type of PC the request volume, order volume, and average price are
stored.

3.2.5 Historical Game Data

As mentioned in the introduction of this section, as well as in section 1.3,
the research which is to be done requires (testing with) a data set containing
historical game data. The data set to be used contains data on a selection
of the TAC SCM 2007 and 2008 Finals and Semi-Finals games run on the
SICS tac3 [37] and tac5 [38] servers and the UMN tac01 [39] and tac02 [40]
servers. This is the latest data available, which is likely to contain game
situations similar to upcoming TAC SCM games. Older games have very
different characteristics, because of the presence of other and more basic
trading agents. By using data from 2007 and 2008, we minimize the risk
of training and testing on non-representative data. Table 3.1 shows the
identification numbers of the games stored in the data set, which is divided
into a training set and a test set to be used for experiments later on. The
games are grouped by year, game type, and server.

The games in the data set are ordered by game identification numbers.
Therefore, the first six games of (for instance) the training set are TAC SCM
2008 Semi-Finals games run on the tac02 server at the UMN, whereas the
last six games are the 2007 Semi-Finals.

Year Type Server ID (train) ID (test)
2007 Semi-Finals SICS tac5 9323-9327 9321,9322,9328
2007 Finals SICS tac3 7308-7312 7306,7307,7313
2008 Semi-Finals UMN tac02 763-768 761,762,769
2008 Finals UMN tac01 794-799 792,793,800

Table 3.1: Games stored in the data set.
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3.2.6 Data Set Summary

The main contents of the data set to be used in this research – which con-
tains historical game data from games introduced in section 3.2.5 – are
summarized in table 3.2. This table displays all parts of the data set that
are discussed in sections 3.2.1, 3.2.2, and 3.2.3. A short description of the
elements and/or information inside is added for each part of the data set.

We have seen that the data set is divided into general data, sales data,
and procurement data. General data only contains little information about
players, banking and market reports. Sales-related information stored in the
data set contains information mostly about offers, orders, and requests for
quotation. Finally, more or less the same data is stored for the procurement
side of the TAC SCM market.

3.3 Identifying Procurement Variables

Now that we have defined a data set, we can continue with identifying
procurement variables. Since this research is one of the first steps in adding
procurement information to MinneTAC’s regime model, we strive to create
variables with low complexity. This will make it easier to evaluate which
procurement information might be of use in improving both the current
regime identification and prediction. Also, the variables created have to
be easily implementable in the current methods, which narrows down the
number of possible procurement variables.

In our data set, each table containing procurement information related
to manufacturers (see figure 3.3) can be summarized in one or two variables,
which represent daily information, decomposed into products or product
groups (market segments) where applicable. The daily information stored
inside the variable is a result of a single value returning metric, such as the
minimum, maximum, or average value of a range of data. Because the agent
has a limited view on the market and its players, it is plausible to analyze
variables which contain information the agent is able to store itself, and
thus all variables should only contain information about the agent. Also,
it is good to analyze variables which can be calculated on a manufacturer
basis, keeping in mind the calculation of the information gain as explained
in section 3.4. This means SuppCap, SuppInv, and SuppQty are not able
to return information in a usable format, because they do not have a field
containing manufacturer identification numbers.

In this thesis, the data set which is being used is not suitable to be used
for variables directly, because – for instance – more than one value of a cer-
tain point of interest exists on an arbitrary day for a specific manufacturer
and optionally a product or component. We can cope with this problem by
means of averaging data, so that only one value remains. Also, it is possi-
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ble to calculate a maximum and minimum value, but this makes calculations
later on more complex. Although averaging data causes a loss of information,
we choose to average the data to make it usable for creating variables for
the regime model, because this thesis is a first step into adding procurement
information and we want to demonstrate only the effect of the addition of
procurement information to the regime model.

Not all tables in the data set can be processed the same way. Three
different types of variables can be distinguished. The first type of variable,
to which we refer to as xd−1,m,g, is constructed in a way that it returns a
single value for every day’s (d) preceding day (d− 1), manufacturer m, and
product or product group g, and is applicable to all data set tables which
contain columns for manufacturers, suppliers, and components. An example
of a variable of this type is the procurement offer price. To extract a variable
from a table containing values for x, for every manufacturer the value of x
is averaged over all suppliers and components. In mathematical terms, the
calculation of xd−1,m,g is:

xd−1,m,g =
∑numS

s=1

∑numCg

c=1 xd−1,m,g,s,c

numXd−1,m,g
. (3.1)

The average is calculated by means of a counting process using numS and
numCg as the number of suppliers and components (per product or market
segment), respectively. The number of entries of x for product (group) g
on day d− 1 for manufacturer m is defined as numXd−1,m,g and xd−1,m,g,s,c

represents the value of x on day d − 1 for component c of product g with
manufacturer m and supplier s. Using (3.1), daily average values for the
order ratio, quantities and prices of supplier offers and orders, and requests
for quotation – again both their quantities and (reserve) prices, but also lead
times – can be calculated on a product basis by substituting x and numX
in the equation.

Because we would like the variable to include some information about
other preceding days as well, so that it represents a trend instead of an event,
we apply an exponential smoother to the variable. The smoothed variable
x̃d−1,m,g is calculated as shown in (3.2), where we set γ to a value of 0.5:

x̃d−1,m,g = γ · xd−1,m,g + (1− γ) · x̃d−2,m,g. (3.2)

Smoothing is done by taking a certain percentage (fifty percent in our
case) of yesterday’s value of x. Then, the remaining percentage is taken of
the previous value of variable x, i.e., the day before yesterday’s value, after
which both values are added up. This is a less complex way of smoothing
than we apply for the normalized mean sales price, but it still smoothes out
the possible volatility of the variable.

The second variable type is applicable to the same tables as the first type,
but differs from the first type because it does not use products or market
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segments, but individual components. Thus, offer prices are a good example
of this variable type. The values for the variable are typically calculated by
applying

yd−1,m,c =
∑numS

s=1 yd−1,m,c,s

numYd−1,m,c
. (3.3)

In this equation, yd−1,m,c represents the value of y on day d − 1 with
manufacturer m and component c. All values for y with all suppliers (de-
noted by s) are summed and divided by the number of entries found in
the log on day d − 1 with manufacturer m and component c, denoted by
numYd−1,m,c. Again, smoothing is applied to the variable using an γ of 0.5
as shown in (3.4), resulting in ỹd−1,m,c:

ỹd−1,m,c = γ · yd−1,m,c + (1− γ) · ỹd−2,m,c. (3.4)

Tables in the data set which lack a column with product identification
numbers, but have columns for manufacturers and suppliers need to be av-
eraged in a different way compared to (3.2) and (3.4). The third and final
variable type can be denoted as

zd−1,m =
∑numS

s=1 zd−1,m,s

numS
, (3.5)

z̃d−1,m = γ · zd−1,m + (1− γ) · z̃d−2,m, (3.6)

in which zd−1,m is the average value of z on day d− 1 with manufacturer m.
Smoothing is done the same way as for (3.1) and (3.3)

This variable type does not involve products or product groups or com-
ponents, but only averages the sum of all values of z on day d with manu-
facturer m for all suppliers s by dividing the latter sum by the number of
suppliers, numS. It is possible to apply (3.5) and (3.6) to the manufacturers’
reputations with the suppliers, by substituting z.

Type 1 (x̃d−1,m,g) Type 2 (ỹd−1,m,c) Type 3 (z̃d−1,m)
orderRatiod−1,m,g orderRatiod−1,m,c reputationd−1,m

demandd−1,m,g demandd−1,m,c

offerQtyd−1,m,g offerQtyd−1,m,c

offerPriced−1,m,g offerPriced−1,m,c

orderQtyd−1,m,g orderQtyd−1,m,c

orderPriced−1,m,g orderPriced−1,m,c

RFQQtyd−1,m,g RFQQtyd−1,m,c

RFQResPriced−1,m,g RFQResPriced−1,m,c

RFQLeadTimed−1,m,g RFQLeadTimed−1,m,c

Table 3.3: Variables extracted from the data set.
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Table 3.3 gives an overview of all variables that can be extracted from
the data set, using the three equations discussed in this section. As stated
earlier, each manufacturer-based table with procurement information in our
data set offers data to convert into one or two variables. For an overview
of all available procurement tables in the data set, see section 3.2.3. The
tables used for the variables of the first and second type are OrderRatio,
SuppDemand, SuppOffers, SuppOrders, and SuppRFQs. The Reputation
table is used for generating a variable of the third type.

3.4 Usage of the Information Gain for Evaluating
Procurement Variables

As is the case in [34] and [35], we need to evaluate which feature (variable)
helps to identify or predict a certain target. However, Andrews et al. try to
identify which features differentiate a winning agent from the other agents,
whereas we try to identify which features add information to the current
process of regime identification and prediction. Therefore, our approach
will be somewhat different from the approach proposed by Andrews et al.

Information about these valuable features could possibly mean a differ-
ence, but also changing complete strategies of the trading agent (based on
these findings) could have a positive effect on the agent’s performance. Due
to the fact that the decisions of the MinneTAC trading agent are based
on the identification and prediction of economic regimes, it is plausible to
add typical (differentiating) procurement information to the regime-related
algorithms, in the hope to improve the results of the agent by taking into
account particular procurement-related aspects. We restrict the usage of
our findings to only incorporating new information into the regime model,
since this is the scope of our research and thus no implementations related
to strategy changes are discussed.

In order to evaluate the variables (or features), the information gain
metric is applied to game data. For now, we experiment on one variable at
a time, but experiments on combinations of variables can perhaps be done in
future. In our analyses, we try to determine whether the first variable type
is better than the second type or the other way around. Furthermore, the
best performing variables (i.e., the variables with the highest information
gain) are selected.

The information gain is an entropy-based metric which indicates how
much better we can predict a certain target by knowing certain features.
In our case, the target is the dominant regime and the features are all
procurement variables introduced in section 3.3.

We define the target values as the currently identified dominant regimes,
because this is the direct result we would like to improve. In [34] and [35],
winning a game is selected as target value, but to us, winning a game is
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only an indirect consequence of improved regime identification. Because we
would like to keep using the same regime labels as are used currently, the
currently identified dominant regimes are the closest target value we can get
at the moment.

Generally, the metric is used for calculating the information gained on
some discrete outcome (in our case the dominant regime) from a discrete at-
tribute (variable). Since the procurement variables introduced in section 3.3
are continuous and the information gain metric needs a discrete attribute,
we need to discretize the variables. This is done by applying a partition
level of 25, making the partitions small enough to avoid loosing too much
information, but large enough to avoid overfitting. Also, the target has to be
discrete, and thus we will not use the regime probabilities, but the dominant
regime only.

As stated earlier, the information gain is an entropy-based metric. Ac-
cording to Mitchell [41], the entropy is a commonly used measure in infor-
mation theory, which characterizes the purity of an arbitrary collection of
examples. Let W be a collection of game results, numW the number of
possible values of W (in our research this value will be five), and P (w) the
probability that W takes on value w. Assuming a uniform probability dis-
tribution, the latter probability is equal to the proportion of W belonging to
class w. The entropy of a collection of game results, entropy (W ), is defined
as

entropy (W ) =
numW∑
w=1

−P (w) log2 P (w) . (3.7)

Now let V be an attribute (procurement variable), numV the number
of possible values of V (which is, as stated earlier in this section, 25), P (v)
the probability that V takes on value v, and P (w|v) the probability that
W takes on value w, given v. The entropy of a collection of game results W
given an attribute V , entropy (W |V ), is defined as

entropy (W |V ) =
numV∑
v=1

P (v)

(
numW∑
w=1

−P (w|v) log2 P (w|v)

)
. (3.8)

Using (3.7) and (3.8), the information gained on outcome W from at-
tribute V , gain (W,V ), can be calculated using

gain (W,V ) = entropy (W )− entropy (W |V ) . (3.9)

Here, the entropy of a collection of game results W given an attribute V is
subtracted from the entropy of W .

The information gain metric as explained above will be applied to vari-
ables gathered from game logs from several games from our data set. We
define a training set which contains 22 games, representing both the TAC
SCM 2007 and 2008 Finals and Semi-Finals games. An overview of the
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identification numbers of the games stored in our training set is given in
table 3.1 of this chapter.

Section 3.5 discusses the results of applying the information gain metric
to each defined procurement variable on the aggregation of data on all games
stored in the data set. In our analyses, we use identified daily (dominant)
regimes on a per product basis as target values, being based on the regime
probabilities returned by models trained on TAC SCM 2005 Semi-Finals
and Finals [42, 9] with five regime clusters (K-Means), twenty-five or six-
teen Gaussians (for individual products and product groups, respectively),
fixed means, and fixed variances. For each variable q, information gains are
calculated per game o per manufacturer m, which are averaged afterwards:

gain (W )q =

∑numO
o=1

∑numM
m=1 gain (W )q,o,m

numO + numM
. (3.10)

For the first and second variable types, individual information gains are
calculated for each product (group) or component, after which an average
information gain is calculated. Since daily (dominant) regimes are defined
for products and market segments, and thus are based on normalized mean
prices for these products and segments, an extra step has to be added to the
calculation methods of information gains for both component-based vari-
ables and variables neither based on components nor on products.

For the second variable type, we need to find a way to associate the dom-
inant regimes with components in order to be able to calculate information
gains for component-based variables. Therefore, for each component, the
information gains of an arbitrary component-based variable are calculated
for each product or market segment which uses the component. Then, an
average information gain can be calculated over the gains of the associated
products and market segments, which is considered as the information gain
for the component. As for the third variable type, information gains for
each product and market segments are averaged.

As stated earlier in this chapter, applying the information gain met-
ric to the proposed procurement variables helps us to identify potentially
good variables to identify and predict economic regimes in the TAC SCM
game, which suggests further research on implementing these variables in
MinneTAC’s regime model is feasible. We continue our research with the
procurement variables with the highest information gains. These variables
are most likely to improve the overall performance of the MinneTAC agent,
if they are implemented correctly in its regime model.

3.5 Information Gain Results

Applying the information gain metric to each variable (type) as explained
in section 3.4 yields the information gains as shown in table 3.4. Next to the
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calculated information gains (gain, (3.9)), the highest achievable information
gains are shown (maxGain, (3.11)), accompanied with a percentage which
expresses how much of this maximum is achieved (relGain, (3.13)).

Variable gain maxGain relGain
offerPriced−1,m,g 0.7393 1.7054 43.3518%
orderPriced−1,m,c 0.7104 1.7046 41.6737%
offerPriced−1,m,c 0.6148 1.7046 36.0647%
orderPriced−1,m,g 0.5400 1.7054 31.6633%
RFQLeadTimed−1,m,g 0.5106 1.7054 29.9422%
orderQtyd−1,m,c 0.5049 1.7046 29.6188%
RFQResPriced−1,m,g 0.4909 1.7054 28.7820%
RFQLeadTimed−1,m,c 0.4622 1.7046 27.1128%
orderRatiod−1,m,g 0.4555 1.7054 26.7100%
RFQResPriced−1,m,c 0.4521 1.7046 26.5238%
orderQtyd−1,m,g 0.4310 1.7054 25.2743%
orderRatiod−1,m,c 0.4161 1.7045 24.4091%
RFQQtyd−1,m,g 0.3901 1.7054 22.8747%
demandd−1,m,g 0.3833 1.7054 22.4772%
RFQQtyd−1,m,c 0.3671 1.7046 21.5333%
demandd−1,m,c 0.3598 1.7046 21.1088%
offerQtyd−1,m,g 0.3174 1.7054 18.6090%
offerQtyd−1,m,c 0.2932 1.7046 17.1993%
reputationd−1,m 0.0571 1.7063 3.3452%

Table 3.4: Information gains for each variable.

In order to be able to value the information gains calculated for each
variable properly, it should be noted that the highest achievable information
gain for each variable in our training set W , maxGain (W ), is equal to its
entropy, as shown in (3.11):

maxGain (W ) = entropy (W ) . (3.11)

The games stored in W sometimes contain failing agents, and the games
also vary in the events happened, resulting in different data for each game
(and manufacturer). Generally, the maximum information gain is about
1.7050 on average.

Equation (3.12) shows how the maximum information gain is calculated
for W , which represents the orderRatiod−1,m,g of product 12 for the man-
ufacturer with identification number 10 in the first game of our data set.
The entropy (maximum information gain) of this particular subset yields
approximately 2.1618. The subset contains 219 values of the variable, of
which 42 values are associated with the first regime, 18 with the second re-
gime, etcetera. The maximum information gain is higher than the one shown
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in table 3.4, which can be explained by the fact that the table only contains
average maximum information gains, whereas our example is the maximum
information gain for one specific combination of game, manufacturer, and
product.

maxGain (W ) = −

(
42
219

log2

42
219

)
−

(
18
219

log2

18
219

)

−

(
26
219

log2

26
219

)
−

(
64
219

log2

64
219

)

−

(
69
219

log2

69
219

)
≈ 2.1618. (3.12)

Variables with high information gains (approaching the maximum in-
formation gains) are more likely to perform well when implemented in the
regime model. Variables are rated based on their relative information gain,
i.e., how much of their maximum information gain is achieved. Equa-
tion (3.13) shows the calculation of the relative information gain for subset
W , relGain (W ):

relGain (W ) =
gain (W )

maxGain (W )
× 100%. (3.13)

By looking at table 3.4, but especially at figure 3.4 (which shows the
relative information gains of each variable), a few observations can be made.
First of all, exponentially smoothed product-based mean procurement-side
offer prices of the preceding day yield the highest (relative) information
gain. Furthermore, some of the variables of the first and second type seem
to return good (relative) information gains, whereas the third variable type
falls behind.

Two component-based variables (i.e., mean procurement offer prices and
mean order prices) and one product-based variable (i.e., mean offer prices)
have information gains with a value clearly higher than the other variables,
and distinguish themselves from the other procurement variables. To illus-
trate the magnitude of (out) performance, the graph shows that the infor-
mation gains of the top three procurement variables are higher than one
standard deviation above the mean of the calculated information gains.

Roughly, variables of the first type outperform their equivalents of the
second variable type a little in most cases. However, order quantities and
prices on a component basis perform notably better than their product-
based equivalents. We cannot conclude that product-based variables out-
perform component-based variables, since product-based variables outper-
form their equivalents mostly (seven times against two times), but the aver-
age amount by which product-based variables outperform the procurement

44



0

10

20

30

40

50

 µ + σ

of
fe

rP
ric

e d−
1,

m
,g

or
de

rP
ric

e d−
1,

m
,c

of
fe

rP
ric

e d−
1,

m
,c

or
de

rP
ric

e d−
1,

m
,g

R
F

Q
Le

ad
T

im
e d−

1,
m

,g
or

de
rQ

ty
d−

1,
m

,c
R

F
Q

R
es

P
ric

e d−
1,

m
,g

R
F

Q
Le

ad
T

im
e d−

1,
m

,c
or

de
rR

at
io

d−
1,

m
,g

R
F

Q
R

es
P

ric
e d−

1,
m

,c
or

de
rQ

ty
d−

1,
m

,g
or

de
rR

at
io

d−
1,

m
,c

R
F

Q
Q

ty
d−

1,
m

,g
de

m
an

d d−
1,

m
,g

R
F

Q
Q

ty
d−

1,
m

,c
de

m
an

d d−
1,

m
,c

of
fe

rQ
ty

d−
1,

m
,g

of
fe

rQ
ty

d−
1,

m
,c

re
pu

ta
tio

n d−
1,

m Variable

R
el

at
iv

e 
In

fo
rm

at
io

n
 G

ai
n

 (
%

)
Relative Information Gain per Variable

 

 
Type 1
Type 2
Type 3

Figure 3.4: Graphical representation of the relative information gains for
each procurement variable.

variables based on components is smaller than the average amount by which
the component-based variables outperform their equivalents. These findings
are supported by table 3.5. The total percentages represent the sum of the
percentages by which a variable type outperforms the other variable type.
The average percentages are calculated by dividing the total percentages by
the number of times a variable type outperforms the other variable type.

As demonstrated, especially the exponentially smoothed product-based
mean procurement offer prices variable (offerPriced−1,m,g) returns good re-
sults in the information gain analyses, followed by component-based order
prices and offer prices (orderPriced−1,m,c and offerPriced−1,m,c, respectively).

Type 1 Type 2
Outperforming 7 times 2 times

Total percentage 69.4898% 48.8045%
Average percentage 9.9271% 24.4022%

Table 3.5: Comparison of the information gains of product-based and
component-based variables (types 1 and 2, respectively).
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Therefore, one can conclude that, because the information gains of these
three variables are notably higher than the gains that have been calculated
for the other variables, knowing the offer prices (both component-based and
product-based) and order prices (component-based) is most likely to improve
the chances of predicting the winning agent for each game.

3.6 Conclusions on the Identification of Promising
Procurement Variables

In this chapter, some feature selection techniques have been suggested.
Regimes can be determined differently when applying fuzzy set techniques.
The feature selection technique which appears to be most suitable, i.e., the
information gain, is selected to be used when continuing our research. With
the information gain metric, we have determined which procurement vari-
able is most likely to affect the performance of the MinneTAC trading agent.

The results of the information gain analyses on the training set defined
in table 3.1 show that mean order prices on a per component basis and
product-based and component-based mean procurement-side offer prices are
most likely to improve the overall trading agent’s performance. Therefore,
they should be implemented in the regime model, since the latter model
is an important part of the MinneTAC agent as a whole, being the core
of daily decision making. The three identified procurement variables only
are applicable to the MinneTAC agent, because only limited information is
available on the other agents in a TAC SCM game by means of the market
report which becomes available every twenty game days, containing little in-
formation on competitors and market conditions, which is not of great value
anymore after only a few game days. We believe information collected by
the MinneTAC agent on order and procurement offer prices is good enough
to indicate the market conditions, since the agent’s behavior influences the
market and is influenced by the market as well.

In order to keep changes to the regime model manageable, only one vari-
able is selected to extend the regime model. Even so, it is not feasible to
select more than one variable based on these information gain analyses, be-
cause no combinations of variables have been analyzed. Product-based pro-
curement variables mostly outperform their component-based equivalents, so
chances are that if a product-based variable is selected, it will generate better
improvements to the performance of the agent than component-based vari-
ables, even though the latter variables outperform product-based variables
to a greater extent than the other way around in case they do outperform
their equivalents.

Taking into account the former observations, as well as the observations
in section 3.5, we select the overall best performing procurement variable:
exponentially smoothed procurement-side offer prices based on products.
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The calculation of the variable, to which we will refer to as õpd−1,m,g, is
shown in (3.14) and (3.15):

opd−1,m,g =
∑numS

s=1

∑numCg

c=1 opd−1,m,g,s,c

numOpd−1,m,g

, (3.14)

õpd−1,m,g = γ · opd−1,m,g + (1− γ) · õpd−2,m,g. (3.15)

In these equations, m only refers to the MinneTAC agent, since the
only information readily available is information about the agent itself. As
already explained, in the TAC SCM game environment, it is a non-trivial
task to collect – or even estimate – data on procurement-related activities
of the competitors due to game constraints. The equation is derived from
equations (3.1) and (3.2).

We continue our research using yesterday’s exponentially smoothed pro-
duct-based mean procurement offer prices õpd−1. The procurement variable
is added to the current regime model, after which the performance is eval-
uated.
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Chapter 4

Altering MinneTAC’s
Regime Identification and
Prediction

In this chapter, we try to find a way to alter MinneTAC’s offline regime
identification and prediction, while leaving the online regime output intact.
In other words, the new regime model with added procurement information
should still return the probabilities for each regime. Online identification
only embodies matching an arbitrary game situation (per day and product
group) to offline identified clusters, referred to as regimes. Therefore, it
does not need to be changed a lot, and thus this chapter focuses on altering
MinneTAC’s offline regime identification. However, regime prediction is
mainly done during a game, and thus this chapter also focuses on altering
MinneTAC’s online regime prediction.

This chapter continues in section 4.1 with elaborating on several aspects
which come to our attention when trying to alter MinneTAC’s regime model.
Section 4.2 discusses a new (or extended) framework for identifying and
predicting regimes to be used by the trading agent, and section 4.3 concludes
the chapter.

4.1 Considerations

As already explained in section 2.3.2, regimes are currently identified offline
by means of clustering posterior probabilities of individual Gaussians (given
normalized mean sales-side prices). These regimes are assigned labels by
means of correlation studies.

If we want to add procurement information to the regime identification
and prediction processes, it is likely that the core of the identification process
being the basis of the prediction processes, the Gaussian Mixture Model,
has to be altered, resulting in new posterior probabilities and thus in new

49



clusters. By adding a dimension to the Gaussian Mixture Model, i.e., mean
procurement offer prices, new clusters which represent the regimes will have
to be identified, making the correctness of the definitions of each current
regime doubtable.

After adding a dimension to the Gaussian Mixture Model, not only the
normalized mean prices influence the properties of the Gaussians and clus-
ters (i.e., shape and location), but also the mean procurement-side offer
prices. Therefore, regimes cannot be defined and labeled purely based on
normalized mean prices anymore. New clusters are likely to emerge, since
using the procurement dimension possibly gives another separation of data
than using the normalized mean price dimension only. When these clusters
are projected onto the normalized mean prices, it is possible that they are
located elsewhere with respect to the current clusters. The newly identified
clusters can then even overlap each other (completely) if a new meaningful
dimension is added to the clustering process.

Because the data being the basis of clustering is enriched with procure-
ment information, defining and labeling regimes becomes harder. It is not
trivial which (current) regime label should be assigned to which cluster (as-
suming there are three or five clusters), and more importantly, which be-
havior should be associated with each cluster. It even is questionable if the
current regimes are applicable at all. By assigning the correct labels to the
new regimes, the MinneTAC agent is able to make correct decisions, whereas
assigning the wrong labels might have disastrous consequences.

To cope with this problem, it is possible to perform correlation studies
on the newly identified regime clusters, in order to be able to label them
correctly using the current regime labels. These correlation studies, if done
properly, enable the MinneTAC agent to use the altered regime identification
process without having the need to change any other (related) parts.

Now that we have identified the exact part of the regime model where
adding procurement information could effect the regime identification the
most, we can create a new framework for regime identification and predic-
tion. This framework is discussed in the next section.

4.2 A New Framework

We demonstrate the updated regime model by extending the equations elab-
orated on in section 2.3.2 in such a way that they also incorporate mean
procurement-side offer prices. Visualizations are based on data from the
training set defined in chapter 3 (which is demonstrated in table 3.1 of the
latter chapter). We first discuss the extended regime identification process
in section 4.2.1, followed by the extensions to the current regime prediction
process (section 4.2.2) and regime model applications, which is discussed in
section 4.2.3.

50



4.2.1 Extensions to Regime Identification

The current regime model is based on a Gaussian Mixture Model (GMM)
with N Gaussian components which have fixed means and variances. This
might lead to good results when fitting a model on one dimension, but after
adding a dimension to the model, fixed means and variances might prevent
the GMM to reach a good fit. Therefore, we do not constrain the means
and variances for now.

As is the case with the current model, we apply the Expectation-Maximi-
zation algorithm to determine the Gaussian components of the GMM and
their prior probabilities, P (ζi). The Gaussian components are, unlike the
components of the current model, based on both np and op. For now,
the number of Gaussian components, N , is equal to 3, because this helps
visualizing and explaining the main concepts of the model.

Because of the addition of the procurement offer prices (op), we extend
the density of the normalized mean sales price, p (np), to the density of the
normalized mean price and mean offer price, p (np ∩ op), such that

p (np ∩ op) =
N∑

i=1

P (ζi) p (np|ζi) p (op|ζi ∩ np)

=
N∑

i=1

P (ζi) p (np ∩ op|ζi) , ∀i = 1, 2, . . . , N. (4.1)

The density is equal to the sum of all Gaussian components p (np ∩ op|ζi)
multiplied by their prior probabilities P (ζi). We define a typical two-
dimensional Gaussian component as

p (np ∩ op|ζi) = p
(
np ∩ op|µnpi

∩ µopi
∩ σnpi

∩ σopi

)
= Ae

−
(

(np−µnpi )
2σ2

npi

+
(op−µopi )

2σ2
opi

)
, (4.2)

where A is the amplitude of the Gaussian, µnpi
and µopi

are the means of
the i-th Gaussian on the normalized mean price and mean offer price axes,
and σnpi

and σopi
are their respective standard deviations.

Figure 4.1 shows plots of a two-dimensional GMM created using the
equations discussed above. The model contains three Gaussian components,
which do not have fixed means and variances, and is trained with a max-
imum of fifteen hundred iterations on data on the low product segment.
Figures 4.1(a) and 4.1(b) show projections of the individual Gaussians and
the density of the normalized mean sales price and mean offer price onto the
axes of both variables. To give a proper understanding of the characteristics
of the density, this density is shown as a surface in figure 4.1(c).

The posterior probability for each Gaussian component, P (ζi|np ∩ op),
follows from (4.1) after applying Bayes’ rule. The resulting posterior prob-
ability can be denoted as shown in (4.3).
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Figure 4.1: A two-dimensional Gaussian Mixture Model on normalized mean
(sales) price and mean procurement offer price, using three Gaussian compo-
nents, which do not have fixed means and variances. This model is trained
with a maximum of fifteen hundred iterations on data on the low product
segment, using data from the training set defined in table 3.1.
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P (ζi|np ∩ op) =
P (ζi) p (np ∩ op|ζi)∑N

j=1 P (ζj) p (np ∩ op|ζj)
, ∀j = 1, 2, . . . , N. (4.3)

Equation (4.3) applies for each Gaussian, and thus the vector of posterior
probabilities for the two-dimensional Gaussian Mixture Model is equal to the
vector described in (4.4):

η (np ∩ op) = [P (ζ1|np ∩ op) , P (ζ2|np ∩ op) , . . . , P (ζN |np ∩ op)] . (4.4)

For each combination of normalized mean prices and procurement offer
prices, we can calculate η (np ∩ op) using the Gaussian Mixture Model we
have fit. Clustering the posterior probabilities in M clusters is done using the
same algorithm as in the current regime model: K-Means. Although fuzzy
C-Means clustering is more intuitive to use and is more stable in usage, we
use the K-Means clustering algorithm, because we do not want to change the
way regimes are to be interpreted by the agent. Clustering is done in fifteen
replicates, using a maximum of one hundred iterations. The squared Eu-
clidean distance measure is used to measure distances to the cluster centers
for each data point. Figure 4.2 shows results of applying the K-Means clus-
tering algorithm to the GMM we have fit to our data on low-range products
with three clusters. A clear separation of clusters is visible.

Figure 4.2: Three identified regime clusters within the low product segment
after applying fifteen replicates of the K-Means algorithm (with a maximum
of one hundred iterations) to posterior probabilities of a two-dimensional
Gaussian Mixture Model, based on product-related data from the training
set defined in table 3.1.
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The cluster centers P (ζ|Rk) correspond to regimes (in our case for prod-
ucts belonging to the low segment), but these clusters do not tell us which
cluster represents which regime. Let us not worry about that for now, since
this is not important for understanding the framework. Let us assume we
know how to assign the proper regime label to each cluster. Then we can
rewrite p (np ∩ op|ζi) in a form that shows the dependence of the normalized
sales price and mean procurement offer price on the regime Rk:

p (np ∩ op|Rk) =
N∑

i=1

P (ζi|Rk) p (np ∩ op|ζi) , ∀i = 1, 2, . . . , N. (4.5)

In (4.5), P (ζi|Rk) refers to the N by M matrix resulting from the
K-Means algorithm, and p (np ∩ op|ζi) refers to the individual Gaussians.
When applying Bayes’ rule, we obtain the probability of regime Rk depen-
dent on the sales and offer prices, as defined in (4.6):

P (Rk|np ∩ op) =
P (Rk) p (np ∩ op|Rk)∑M
j=1 P (Rj) p (np ∩ op|Rj)

, ∀j = 1, 2, . . . ,M. (4.6)

Figure 4.3 shows a plot of the regime probabilities (given normalized sales
price and procurement offer price) for products of the low segment, resulting
from a Gaussian Mixture Model and clustering its posterior probabilities in
three clusters. We observe that each identified regime is dominant for certain
combinations of both variables the model is based on, albeit not with a high
confidence, since the probabilities of the clusters often are close to each
other.

Regime probabilities can be calculated for different combinations of nor-
malized mean prices and procurement-side offer prices. We choose fifty
normalized mean prices and fifty mean offer prices and calculate the regime
probabilities per cluster for each combination of both variables. Values of a
variable are equally distant from each other and range from the minimum
value of the variable in the data set to its maximum value. This results in
M fifty by fifty matrices containing regime probabilities.

Now that we have defined a new regime model for identifying regimes
offline – by adding a procurement variable, i.e., offer prices – we can update
the online regime identification. There is no direct need to change the algo-
rithm which is currently used. However, we do need to add the procurement
variable identified in chapter 3, so that the online identified regime R̂r on
an arbitrary game day d is dependent on yesterday’s (i.e., d − 1) exponen-
tially smoothed normalized mean price ñpd−1 and yesterday’s exponentially
smoothed procurement offer price õpd−1. The result is shown in (4.7).

R̂r s.t. r = argmax ~P (R̂k|ñpd−1 ∩ õpd−1). (4.7)
1≤k≤M
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Figure 4.3: Regime probabilities (given normalized price and mean procure-
ment offer price) for products of the low segment, resulting from a Gaussian
Mixture Model with two dimensions, of which its posterior probabilities are
clustered in three clusters. The probabilities are based on data from the
training set defined in table 3.1.

The regime probabilities can be estimated online using each regime’s fifty
by fifty probability matrix. Instead of the one-dimensional linear interpola-
tion which is currently used, two-dimensional linear interpolation should be
used in the new regime model. Determining the dominant regime remains
unchanged, and thus the dominant regime is still equal to the regimes with
the highest probability.

One can conclude that in general, the regime identification still works
similar to the current regime (identification) model. However, a dimen-
sion has been added to the Gaussian Mixture Model, causing differently
structured probability densities as well as regime clusters. This requires
reformulating the entire regime identification model.

4.2.2 Extensions to Regime Prediction

In section 2.3.2, several regime prediction techniques are introduced. This
section continues with elaborating on extensions to these techniques. First,
regime prediction using an exponential smoother process is discussed. Then,
Markov prediction processes are discussed, followed by Markov correction-
prediction processes. Recall that each process is most suitable for a specific
time span. Exponential smoothing can best be applied to predict today’s
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regime probabilities, whereas Markov processes are more suitable for short-
term and long-term predictions. Again, ensemble prediction is not consid-
ered.

Exponential Smoother Process

As stated in section 2.3.2, today’s regime probabilities are estimated using
an exponential smoother process. This process calculates a trend of a cer-
tain variable. In the initial model, this variable represents the exponentially
smoothed normalized mean sales price. Then, future values of the vari-
able can be calculated, which can then be used to estimate future regime
probabilities.

In order to extend this approach to include procurement information
as well, we leave the prediction of the normalized prices n days into the
future (ñpd+n) as it is. Because of the fact that the procurement variable
(i.e., procurement offer prices) represents a mean value and we do not have
minimum and maximum, the trend of this variable cannot be calculated
similar to the trend of the sales price. Also, different smoothing is applied
to procurement offer prices than to sales prices, which means the two Brown
linear exponential smoothing components used for calculating the sales price
trend are not available for our procurement variable.

We calculate the trend of õpd−1, defined as t̃r
op
d−1, as shown in (4.8).

Here, the trend is equal to the difference between yesterday’s (exponentially
smoothed) procurement offer price and the price of the day before yesterday:

t̃r
op
d−1 = õpd−1 − õpd−2. (4.8)

Then, future values for n days into the future up to planning horizon
h are calculated similar to future values of ñp, as shown in (4.9). Here,
the calculated trend is added 1 + n times to the last known value of the
procurement offer prices. We express the future values of õp mathematically
as

õpd+n = õpd−1 + (1 + n) · t̃ropd−1, ∀n = 0, 1, . . . , h. (4.9)

Now that we have future values for day d+n of ñp and õp, we can extend
the calculation of the regime probabilities for n days into the future. This
calculation is an extension to (2.16) and is done as follows from (4.10):

P
(
R̂k|ñpd+n ∩ õpd+n

)
=

p
(
ñpd+n ∩ õpd+n|R̂k

)
P (Rk)∑M

k=1 p
(
ñpd+n ∩ õpd+n|R̂k

)
P (Rk)

, ∀k = 1, 2, . . . ,M. (4.10)

Here, the density of ñpd+n and õpd+n dependent on regime Rk is calcu-
lated using (4.5) by marginalizing over the individual Gaussians and cluster
centers, which is shown in (4.11).

56



p
(
ñpd+n ∩ ñpd+n|R̂k

)
=

N∑
i=1

p
(
ñpd+n ∩ ñpd+n|ζi

)
P (ζi|Rk) . (4.11)

We conclude that probabilities and densities used for the exponential
smoother prediction process are now also dependent on procurement in-
formation. Also, trends are calculated differently for this newly added pro-
curement information. However, the basic operation of the regime prediction
model (regarding the exponential smoother process) is still quite similar to
the current model.

Markov Process

Now that we have extended the prediction of regime probabilities for to-
day, we continue with extending the short-term and long-term prediction
techniques, which are Markov prediction and Markov correction-prediction,
respectively. Short-term predictions are defined as predictions for one to ten
days into the future, whereas long-term predictions are defined as predictions
for eleven to twenty days into the future.

As already explained in section 2.3.2, both Markov techniques are quite
similar. For both techniques, predictions are based on identified regimes, but
for Markov correction-prediction, the identified regimes are corrected first,
which makes them also dependent on the history of the variables instead of
just one value per variable.

The Markov transition matrices used in the predictions, T (rd+n|rd), do
not need to be redefined, since they are only dependent implicitly on the
variables. Also, we focus on the n-day predictions only, and thus the re-
peated one-day predictions are omitted, because of observations made in
section 2.3.2.

One can extend the Markov prediction process to include procurement
information by using identified regime probabilities on day d − 1 based on
ñpd−1 and õpd−1, instead of just ñpd−1. Equations (4.12) through (4.14)
show how a vector with these regime probabilities is constructed:

p
(
ñpd−1 ∩ õpd−1|R̂k

)
=

N∑
i=1

p
(
ñpd−1 ∩ õpd−1|ζi

)
P (ζi|Rk) , (4.12)

P
(
R̂k|ñpd−1 ∩ õpd−1

)
=

p
(
ñpd−1 ∩ õpd−1|R̂k

)
P (Rk)∑M

k=1 p
(
ñpd−1 ∩ õpd−1|R̂k

)
P (Rk)

, ∀k = 1, 2, . . . ,M, (4.13)

~P
(
r̂d−1|ñpd−1 ∩ õpd−1

)
={

P
(
R̂1|ñpd−1 ∩ õpd−1

)
, . . . , P

(
R̂M |ñpd−1 ∩ õpd−1

)}
. (4.14)

57



Equations (4.12) and (4.13) are derived from (4.5) and (4.6), respectively.
Similarly, it is possible to extend the identification of regime probabilities
on day d− 1, while taking into account the entire history of values of both
variables. The calculation of a vector containing these corrected probabilities
(being the basis of the Markov correction-prediction process) is performed
by evaluating two expressions, which are

P
(
R̂k|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
=

p
(
ñpd−1 ∩ õpd−1|R̂k

)
P
(
R̂k|

{
ñp1, . . . , ñpd−2

}
∩
{
õp1, . . . , õpd−2

})
∑M

k=1 p
(
ñpd−1 ∩ õpd−1|R̂k

)
P
(
R̂k|

{
ñp1, . . . , ñpd−2

}
∩
{
õp1, . . . , õpd−2

}) ,

∀k = 1, 2, . . . ,M, (4.15)
~P
(
r̂d−1|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
={

P
(
R̂1|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
, . . . ,

P
(
R̂M |

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})}
. (4.16)

Here, a Bayesian correction is applied by identifying the regime prob-
abilities while taking into account the predicted probabilities of yesterday
(d− 1) on the day before yesterday (d− 2) and yesterday’s probability den-
sity of ñpd−1 and õpd−1 dependent on R̂k. This density is calculated by
applying (4.12).

Now the vectors shown in (4.14) and (4.16) can be plugged into the n-day
Markov prediction and correction-prediction processes, as shown in (4.17)
and (4.18), respectively:

~P (r̂d+n|ñpd−1 ∩ õpd−1) =∑
rd+n

. . .
∑
rd−1

{
~P (r̂d−1|ñpd−1 ∩ õpd−1) · Tn (rd+n|rd−1)

}
,

∀n = 0, 1, . . . , h, (4.17)
~P
(
r̂d+n|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
=∑

rd+n

. . .
∑
rd−1

{
~P
(
r̂d−1|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
·

Tn (rd+n|rd−1)
}

, ∀n = 0, 1, . . . , h. (4.18)

Here, the previous (identified for n = 0, or otherwise predicted) posterior
regime probabilities dependent on the (history of) normalized mean sales
prices and mean procurement offer prices are multiplied with the applicable
Markov transition matrix.

In general, the basic operation of the regime prediction model (regarding
Markov processes) is still equal to the current model. However, probabilities
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and probability densities are now also dependent on procurement informa-
tion, forcing us to redefine the entire framework.

4.2.3 Extensions to Price Prediction

Extending the price density distribution of n days into the future (up to plan-
ning horizon h) shown in (2.27) leads to a two-dimensional density function,
p
(
n̂pd+n ∩ ôpd+n|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
, which is defined as

p
(
n̂pd+n ∩ ôpd+n|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
=

M∑
k=1

p (np ∩ op|Rk) P
(
R̂k,d+n|

{
ñp1, . . . , ñpd−1

}
∩
{
õp1, . . . , õpd−1

})
,

∀n = 0, 1, . . . , h. (4.19)

Again, we marginalize over k densities based on regimes and over pre-
dicted regime probabilities for n days into the future. The density shown
here is again created by sampling over the variables. However, because a
dimension has been added, an increment of 0.01 for np would result in time
consuming calculations, which we try to avoid.

Therefore, sampling over np is done by using 50 equal increments, for
values ranging from 0.00 to 1.25. This leads to a more course-grained ap-
proximation of the density, but it is assumed that it is still fine-grained
enough. Also, op is sampled over by using 50 equal increments, for values
ranging from the minimum op the regime model is trained on and the maxi-
mum op. This leads to 2,500 samples with which a density grid is created, in
contrast to 126 samples used for the approximation of the one-dimensional
density function.

The agent does not need a two-dimensional density function, since only
the sales price trends are needed for further decision making. Therefore, the
grid is projected onto the np axis by selecting the maximum density on the
op axis for each value of np. Then, the cumulative density function (CDF)
of the price density distribution can be calculated again, after the density
function has been discretized and normalized. Finally, the CDF is used for
estimating medians for each day in the future, which are used for calculating
daily price trends.

4.3 Concluding Remarks

In this chapter, we have seen how two-dimensional Gaussian Mixture Models
are defined and how to compute their posterior probabilities. Clustering the
latter probabilities is done using the K-Means algorithm, in order to make
sure the way the regimes are interpreted by the agent remains the same.
One should keep in mind that, although new regimes can be defined easily
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with the framework, defining new regime clusters also implies relabeling the
clusters, which is a problem to be solved. Furthermore, we presented a way
to relate the identified regime clusters to the normalized mean sales price
and mean procurement offer price.

Also, we have extended the prediction processes and the resulting sales
price (trend) predictions, so that they are based on both sales and pro-
curement information. The basic operations are still similar to the current
model, but other probabilities and probability densities are used, since they
are now based on procurement information (i.e., offer prices) as well.

In our next chapter, we need to use the framework elaborated on in
this chapter for creating new regime models. For this, mostly the same
configurations as presented in this chapter can be used.
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Chapter 5

Experimenting with a New
Regime Model

This chapter discusses offline and online experiments related to regime iden-
tification and prediction. We try to determine an optimal model configura-
tion offline, which is to be used in online experiments. Section 5.1 elaborates
on experiments done offline, whereas section 5.2 discusses online experi-
ments. Section 5.3 summarizes this chapter into a few conclusions regarding
the experimental results.

5.1 Offline Regime Experiments

This section elaborates on regime-related experiments we run offline using
MATLAB to simulate specific game situations, build regime models, and eval-
uate experimental results. The experiments include training regime models
using the framework discussed in chapter 4, and evaluating these regime
models.

5.1.1 Experimental Setup

Experiments are done based on the data set introduced in chapter 3. Models
are trained using the training set shown in table 3.1, and are evaluated
mostly using the test set defined in the latter table. Before any experiments
are done, outliers in the data are removed. In our experiments, we evaluate
models with different numbers of regimes and other settings, but eventually,
one model is chosen to be implemented for online testing. Furthermore, a
separate model is trained for each product or market segment.

On a side note, as stated earlier, current implementations of the regime
prediction framework differ slightly from the framework as it is explained in
this thesis. However, we implement the newly defined framework exactly as
proposed. Also, no ensemble prediction is implemented; the predictors are
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assigned to the appropriate time spans discussed in chapters 2 and 4. This
simplifies calculations, but should still give feasible results.

Training

Training regime models is done based on the framework discussed in chap-
ter 4. This implies that for regime identification purposes, we create Gaus-
sian Mixture Models with no fixed means and variances and with a maximum
number of iterations of fifteen hundred. We are able to vary the number of
Gaussians and of course the data we train on (i.e., we distinguish our models
per product segment). Furthermore, with respect to clustering the poste-
rior probabilities, the K-Means clustering algorithm is to be applied with
the same configurations (i.e., squared Euclidean distance measure, fifteen
replicates, a maximum number of one hundred iterations, and a fifty by fifty
probability matrix per cluster), but we are able to change the number of
clusters desired. The settings for the experiments on training identification
models are shown in table 5.1, together with prediction settings, which are
discussed later on in this section.

The number of Gaussians N in the Gaussian Mixture Model (GMM)
is set to either three, five, ten, fifteen or twenty-five in our experiments.
Increasing the number of Gaussians used to fit a GMM on data leads to
more complex models and increases computation times. To shorten the
total computation time of the experiments, we only go up to twenty-five
Gaussians, which should give desired results given the current regime model,
which can do with sixteen Gaussians. To shorten computational time even
further, only a selection of numbers of Gaussians is evaluated.

For the number of regime clusters M we experiment with three and
five and of both numbers we try to find an optimal configuration, since the
current regime model works with three or five regimes (i.e., labels have been
defined for these regimes and games have been successfully played using
them). Other numbers of regimes are applicable as well, but are not used
very often. Furthermore, with three and five regimes we will keep things
understandable, because identified regime clusters can be related to real-
world regimes from economic theory (with or without extreme regimes).

Besides varying the number of Gaussians and clusters, we also vary the
product segments the models are trained on. In our experiments, models
are trained for low-, mid-, and high-range products, so that we get a view
on the way models fit on different types of products, without going into too
much detail on products individually.

As shown in table 5.1, for regime predictions, we use several techniques,
which are all discussed in chapter 4. Recall that no ensemble prediction
is used, and therefore each prediction algorithm is assigned to the most
appropriate time span. For the prediction of today’s regime probabilities,
exponential smoothing is applied to the last known values of the selected
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Technique Property Value
GMM Data Training set (all)

Fixed means No
Fixed variances No
Maximum iterations 1500
Number of Gaussians (N) {3, 5, 10, 15, 25}
Product segments {low,mid,high}

Clustering Data Training set (all)
Algorithm K-Means
Distance measure Squared Euclidean
Replicates 15
Maximum iterations 100
Number of clusters (M) {3, 5}
Product segments {low,mid,high}
Probability matrices M× 50 by 50

Pred. today Data None
Technique Exp. smoother pred.
Days d + 0

Pred. short-term Data Training set (all)
Technique Markov pred.
Days d + 1, . . . , d + 10

Pred. long-term Data Training set (all)
Technique Markov corr.-pred.
Days d + 11, . . . , d + 20

Table 5.1: Overview of settings for offline training experiments.

variables, in order to be able to calculate a trend. This trend can be used to
predict future values and thus future regime probabilities can be determined.
In contrast to the other prediction methods which are discussed next, for
this type of prediction no specific training is required.

For the prediction of the regime probabilities up to ten days in the future,
training is required. Here, an n-day Markov prediction is applied, which
uses offline trained transition matrices (one for each day up to the planning
horizon). These matrices are trained using data from the training set, as well
as the probabilities of the identified regimes in our new models. Note that
n-day prediction is used instead of repeated one-day prediction, because of
observations made in section 2.3.2.

As an extension to the Markov prediction process, we apply a Markov
correction-prediction process to compute regime probabilities up to twenty
days in the future. The same Markov transition matrices are used as for
Markov predictions, but identified regimes are corrected before any other
calculations take place.
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Evaluation

Evaluating the trained models is done in several ways, demonstrated in
table 5.2, which should – once combined – give a sufficient view on the
models on which decisions about the performance of models can be made.
Apart from that, evaluation is done based on both training and test sets.

The training set is used for evaluating the regime clusters resulting from
the clustering of the posterior probabilities of a Gaussian Mixture Model.
This evaluation is done by means of a correlation analysis, the results of
which can be used to assign proper labels to the identified regime clusters.
Seventy-five hundred data points drawn from the training set are used to cal-
culate the Pearson correlation between the identified dominant regime and
economic regime identifiers, such as factory utilization and finished goods.
This number of samples is large enough to ensure p-values below 0.01.

The test set is used for evaluating the course of regime probabilities
over game time. For evaluation purposes, the results of a typical agent in a
typical game are extracted from the test set to generate graphs from. We
choose the second manufacturer of the fourth game in the test set (with
identification number 792tac01).

Technique Property Value
Correlation Data Training set (all)

Type Pearson
Number of samples 7500
Product segments {low,mid,high}

Probabilities Data Test set (792tac01)
Agent ID 11
Product segments {low,mid,high}

Entropy Data Test set (792tac01)
Agent ID 11
Product segments {low,mid,high}

Relative Entropy Data Test set (all)
Product segments {low,mid,high}

Prediction Data Test set (all)
Product segments {low,mid,high}

Table 5.2: Overview of settings for offline evaluation experiments.

To see whether models give feasible regimes over time (e.g., there should
not be one dominant regime throughout the game and there should not be
a completely different regime every single day), we take a look at graphs
on the course of regime probabilities. If applicable, the regime probabili-
ties generated by the current regime model are taken into account as well.
Also, the confidence of the models is measured using the entropy, of which
graphs are evaluated for our selected typical agent and game. As stated
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in section 2.3.2, low entropies indicate a high confidence, whereas high en-
tropies indicate low confidence. Furthermore, an average relative entropy is
calculated for each model, so that models can be compared to each other.

The entropy of a set of online estimated regime probabilities R̃ on an
arbitrary game day d for a specific game f and product group g and a typical
agent m is calculated as shown in (5.1). This equation is used for generating
graphs of the course of entropies estimated online during a specific game for
a typical agent and product segment:

entropy(R̃)g,f,m,d =
M∑

k=1

− P
(
Rk|ñpd−1 ∩ õpd−1

)
g,f,m,d

log2 P
(
Rk|ñpd−1 ∩ õpd−1

)
g,f,m,d

. (5.1)

The relative entropy is calculated as shown in (5.2). Here, the rela-
tive entropy is calculated by expressing the entropy as a percentage of the
maximum entropy, which is equal to log2 M :

relEntropy(R̃)g,f,m,d =
entropy(R̃)g,f,m,d

log2 M
× 100%. (5.2)

The average relative entropy of each individual model is obtained as
shown in (5.3) through (5.6). Here, we calculate the entropies for each
product (1, . . ., numP), game (1, . . ., numG), manufacturer (1, . . ., numM),
and day (1, . . ., numD). Per product, the daily entropies are averaged per
manufacturer to obtain average game entropies, which are averaged again so
that one single average entropy remains per product. To obtain the average
relative entropy per model, the average entropies of all product segments
are averaged. We define average relative entropies as

avgRelEntropy(R̃)g,f,m =
∑numD

d=1 relEntropy(R̃)g,f,m,d

numD
, (5.3)

avgRelEntropy(R̃)g,f =
∑numM

m=1 avgRelEntropy(R̃)g,f,m

numM
, (5.4)

avgRelEntropy(R̃)g =

∑numG
f=1 avgRelEntropy(R̃)g,f

numG
, (5.5)

avgRelEntropy(R̃) =

∑numP
g=1 avgRelEntropy(R̃)g

numP
. (5.6)

Regime predictions are evaluated by means of counting processes. We
express the number of times a correct regime is predicted as a percentage
of the total number of predictions. Also, the number of times a regime
change is correctly predicted (using a safety margin of plus or minus two
days) is expressed as a percentage. The prediction performance of the new
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regime model is compared to the prediction performance of the current re-
gime model (described in section 2.3.2). These measures have already been
introduced in section 2.3.2. Here, we also introduced other measures, but
these measures are computationally more intensive and our currently se-
lected measures provide a quick look at the performance of the prediction.

Now that we have defined our training and evaluation experiments, we
can go on to presenting the experimental results in section 5.1.2.

5.1.2 Experimental Results

After running experiments using the setup as described in section 5.1.1, we
find that the higher the number of Gaussians, the lower the average relative
entropy. This is the case for models based on three regimes, as well as
models which are based on five regimes. The three-regime models generally
have somewhat lower entropies than their five-regime equivalents. Table 5.3
supports the latter observations.

Usually, increasing the number of Gaussians leads to a decrease in av-
erage relative entropies. This means models become more confident when
Gaussians are added. This phenomenon can be explained by the fact that
one can define a more detailed probability model, resulting in more accurate
predictions and thus a higher confidence.

Because of our setup, we do not look any further than 25 Gaussians
and as the results show, it is likely we also do not need to look at more
models based on more Gaussians. Although the entropy keeps declining
when more Gaussians are added to the model, the amount with which the
entropy declines keeps getting smaller.

A confident model (i.e., a regime model which returns low entropy values)
only implies a good model to a certain extent. Of course a model needs a
certain amount confidence, because otherwise it cannot predict anything
well, but too much confidence can easily lead to overfitting: the model
returns wrong values with absolute certainty. Thus, we evaluate the course
of the estimated regime probabilities over game time for game 792tac01.

3 clusters 5 clusters
3 Gaussians 75.0898% 79.2392%
5 Gaussians 65.7491% 59.3567%

10 Gaussians 50.5709% 57.6967%
15 Gaussians 50.8337% 54.4893%
25 Gaussians 46.3429% 47.1262%

Table 5.3: Overview of calculated average relative entropies for models with
different combinations of number of Gaussians and number of clusters. Set-
tings are to be found in section 5.1.1. For calculation of the average relative
entropies, (5.6) is used.
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In what follows, the estimates – and, where applicable, other evaluations –
are based on data related to the agent with identification number 11 in the
latter game and trained models are analyzed for low-, mid-, and high-range
products.

Three-Regime Models

This section discusses experiments on regime models based on three regimes.
First, the optimal number of Gaussians is determined, after which further
analysis is done on the best performing models.

Determining the Optimal Number of Gaussians

Figure 5.1 shows the course of regime probabilities during the game for
models trained on data on low-, mid-, and high-range products. For each
model, three clusters have been identified. It is clear that different numbers
of Gaussians lead to different courses of regime probabilities. Regime clusters
are labeled by means of a correlation analysis, which is discussed in more
detail later on.

Models trained with three Gaussians do not perform very well. Although
low-range products seem to have a plausible model, the regime probabilities
and/or the dominant regimes of mid- and high-range products are infeasible.
For mid-range products, the game starts with an oversupply regime, which is
highly unlikely, since no finished products are available at the start of an ar-
bitrary game. Each game should start with a scarcity regime. Furthermore,
the model for high-range products seems to experience some overfitting,
which is indicated by a high probability for the same regime for a long time.

Five-Gaussian and ten-Gaussian models return feasible regime probabil-
ity estimations. Probabilities vary over time, but there are not too many
regime changes. Also, in contrast to the three-Gaussian models, the game
starts with a scarcity regime for all evaluated product segments. However,
there is one exception to make; a regime model with ten Gaussians which
is trained on low-range product data returns a high estimated probability
for a balanced regime at the start of a game, which does not fit well to the
statement made earlier that games should start with a dominant scarcity
regime.

Besides the regime models built on five and ten Gaussians, models cre-
ated with fifteen or twenty-five Gaussians give good results as well. However,
for the mid-range products, we see some regime swapping between scarcity
and oversupply around day 150, which might not be necessary.

For other agents, the same observations hold, and sometimes these agents
yield more extreme results. For instance, for the first agent of the first game
in our test set, as well as the fifth agent of the fifth game in our test set, only
one dominant regime is identified for approximately the entire game when
more than ten Gaussians are used for fitting a Gaussian Mixture Model.
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It seems that only with five Gaussians, always a feasible regime model is
created.

As we already observed when calculating the average relative entropies,
the more Gaussians we use to fit a Gaussian Mixture Model, the higher the
confidence of the regime model. The question is: how confident must our
optimal regime model be? We do not want to risk overfitting the model (i.e.,
the model returns more or less the same estimates for regime probabilities for
many days in a row in a game), so we do not need to use a lot of Gaussians.
Also, using less Gaussians saves computation time.

As we have seen in the graphs, using three Gaussians did not give feasible
results, whereas fifteen and twenty-five Gaussians seem to risk overfitting.
Therefore, five or ten Gaussians are likely to be our best pick, even though
using ten Gaussians for fitting a Gaussian Mixture Model does not always
work out well. Supported by the latter observations and by the fact that
adding more Gaussians to the model leads to more or less the same results
(apart from some regime swapping), albeit somewhat more extreme, a total
number of five Gaussians is selected to be the best setting for a three-regime
model.

Further Analysis of the Selected Models

Now that we have determined the number of Gaussians which possibly yields
good regime models when three regimes are to be identified, we can take
a look at the characteristics of these models, after which we can continue
evaluating the performance. Figure 5.2 shows the Gaussian Mixture Model
fit on low-range product data from the training set using five Gaussians.
The Expectation-Maximization algorithm as mentioned in chapters 2 and 4
is used for determining the optimal values of the model’s parameters. Fitting
for mid- and high-range products produces models which look more or less
the same as the model which is shown in the figure.

As we take a look at the posterior probabilities for each cluster (defined
as P (Rk|np ∩ op) ,∀k = 1, 2, 3 after applying the K-Means algorithm to the
posterior probabilities of the Gaussian Mixture Model) in figure 5.3, we
notice that there are clearly dominant regimes for most of the combinations
of normalized mean sales-side prices and mean procurement-side offer prices.
Low sales prices and high (procurement) offer prices do not yield convincing
dominant regimes, since the difference between the regime probabilities is
rather small. Products belonging to the mid- and high-range result in similar
posterior probability plots. Note that at this point, no labels have been
assigned to identified clusters yet. Therefore, the colors of the different
clusters in this figure do not necessarily match the colors of the regimes in
figure 5.1.

In addition to the graphs showing the course of the estimated regime
probabilities for the low-, mid-, and high-range products (based on data from
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Figure 5.2: A two-dimensional Gaussian Mixture Model on mean sales price
and mean procurement offer price, using five Gaussian components, with no
fixed means and variances. This model is trained with a maximum of fifteen
hundred iterations on training data (table 3.1) on the low product segment.

Figure 5.3: Regime probabilities (given mean sales price and mean procure-
ment offer price) for low-range products, resulting from a two-dimensional
Gaussian Mixture Model, of which its posterior probabilities are clustered
in three clusters. The probabilities are based on training data (table 3.1).
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the training set), we can also evaluate the daily entropies of the estimated
regime probabilities for the second agent of the fourth game in our test set.
These entropies are referred to as entropy(R̃)g,f,m,d, where g is either low,
mid, or high, f is equal to four, m equals two and d is for all game days.
The daily entropies of the observed game and agent from the test set are
shown in figure 5.4.
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Figure 5.4: Daily entropies of the estimated regime probabilities for a specific
game (ID 792tac01) and a typical agent (ID 11) using test data (table 3.1).
Regimes are estimated based on clustered regime probabilities resulting from
a two-dimensional Gaussian Mixture Model with five individual Gaussians.
Three regimes are identified.

The latter figure follows directly from figure 5.1, because regime proba-
bilities close to each other generate high entropies and a clearly dominant
regime results in a low entropy. Therefore, on days in the game where the
estimated regime probabilities are for instance close to each other, the en-
tropy has a high value. Figure 5.4 enables the viewer to see quickly how close
regime probabilities are on an arbitrary game, which is why we also take a
look at these plots, instead of just the course of the regime probabilities.

As we could already predict using the average relative entropies (ta-
ble 5.3), daily entropies in the analyzed game are indeed rather high, i.e.,
close to the maximum entropy value for this number of regimes. We recall
from section 5.1.1 that this maximum value is equal to log2 M , where M is
the number of regimes. Therefore, the maximum entropy is approximately
1.5850, and thus daily entropies approaching this value are considered as
high entropies.

The entropy often approaches its maximum value throughout the game,
but low entropy values are obtained occasionally as well. The models for
low-, mid-, and high-range products predict regimes in the beginning of the
game with high confidence, which should be correct, since a game always
starts with a scarcity regime. However, the models’ confidence declines
rapidly after the first few days, and thus the daily entropy values increase.
Often, end-game situations are hard to identify regimes for. However, the
model for mid-range products seems to be very confident of its estimations.
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We do not know whether the estimations are correct, but we do know there
is a possibility that some overfitting has occurred.

In order to be able to assign regime labels to the regimes (i.e., scarcity,
balanced, and oversupply), we need to perform some correlation studies. As
stated earlier, these correlation studies are applied to each model shown in
figure 5.1, so that a proper label can be assigned to each regime cluster.
We now continue with elaborating on the correlation studies performed on
three-regime models based on a Gaussian Mixture Model with five individual
Gaussians.

Figure 5.5 shows the correlations of the identified regime clusters of a
model trained on low-range product data with several regime indicators.
The p-values for the correlation analysis are all approximately zero, i.e.,
less than 0.01. The correlations are similar to those of the models trained
for mid-range and high-range products. A few indicators (or factors) are
derived from [43] and [17], where regime models are introduced with three
and five (labeled) regimes. The indicators used for our correlation studies are
both market parameters as well as the variables used for training the regime
models. Market parameters are the game day, the amount of finished goods,
factory utilization and sales-side offer ratio (offers divided by demand).
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Figure 5.5: Correlation coefficients of identified regime clusters, resulting
from a two-dimensional Gaussian Mixture Model with five individual Gaus-
sians created based on low-range product data. Three regimes are identified.

Looking at the graph, we see results similar to those presented in [43]
and [17]. Market parameters correlate the same way with the new regimes as
they do with the current regimes. Also, the normalized mean (sales) prices
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seem to correlate similarly. However, we notice that the procurement offer
prices do not always correlate in a logical way with the regimes.

An oversupply situation is strongly and positively correlated with time,
the amount of finished goods available, and the sales-side offer ratio. This
means that an oversupply regime mostly occurs towards the end of a game.
Also, a lot of finished goods are available and the offer ratio is high in an
oversupply situation, which is according to the associated economic theory,
because there are too many goods available and the demand falls behind.
There is a negative correlation with factory utilization, which means that
factories are used less in an oversupply situation, which is feasible, because
there is no need to produce at full power, but agents will keep producing
because of a possible predicted regime change in the (near) future. Fi-
nally, there is a (strong) negative correlation with normalized mean sales-
side prices (also referred to as order prices) and mean procurement-side offer
prices, which indicates low prices.

Scarcity correlates with the market parameters differently. We notice
that scarcity is more likely to occur in the beginning of a game. Finished
goods and (sales-side) offer ratio show a strong negative correlation, which
means that there is a lack of finished goods and the offer ratio is low, which
points out a possibility that the customer demand is higher than the offered
quantity of finished goods. Sales prices show a strong positive correlation,
indicating high prices, which is sound to economic theory. Offer prices show
almost no correlation at all.

A balanced situation shows low positive and negative correlations with
all indicators, indicating it is a true balanced situation. However, procure-
ment offer prices show a strong (and positive) correlation with the balanced
regime.

As we have seen, correlation studies show that, despite some side notes,
regime labels can be assigned to the identified regime clusters, because
the clusters actually represent economical regimes defined in economic the-
ory. Furthermore, the entire analysis of the selected model discussed above
shows that a regime model based on normalized mean (sales) prices and
procurement-side offer prices is feasible when five Gaussians are used in the
Gaussian Mixture Model and three regime clusters are identified. To exam-
ine the applicability of the newly defined regime model even more, we take
a look at the accuracy of the model’s predictions, compared to the current
model.

Looking at the prediction performance of the selected regime model
(compared to the performance of the current model), one can observe im-
provements, as well as deteriorations. This observation is supported by ta-
ble 5.4. Here, the accuracy measured in a percentage of correctly predicted
regimes and regime switches. The table shows the performance of the new
model compared to the current model for three market segments. The score
of the best performing model is printed bold. Note that the current model is
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represented by a one-dimensional Gaussian Mixture Model based on sixteen
Gaussians (using fixed means and variances) and mean sales prices.

Correct Market New model Existing model
Regime Low-range 56.21% 51.86%

Mid-range 68.15% 52.93%
High-range 50.91% 41.91%

Time Low-range 38.36% 52.78%
Mid-range 53.60% 43.44%
High-range 33.81% 46.30%

Table 5.4: Prediction performances of a two-dimensional Gaussian Mixture
Model with three clusters and five individual Gaussians (new model) com-
pared to the performance of a one-dimensional five-cluster Gaussian Mix-
ture Model with sixteen individual Gaussians (existing model). Results are
shown for three market segments and are based on test data (table 3.1).

One can conclude that the newly defined two-dimensional Gaussian Mix-
ture Model performs better in predicting the correct regimes up to twenty
days in the future than the current model. This makes sense, since we
have defined less clusters, and thus the probability of predicting the correct
dominant regime automatically increases. In one market segment, the new
regime model predicts moments of regime change more accurately than the
current regime model, whereas the other market segments fall behind.

Taking into account all previous observations in the evaluation of the
selected configuration of the new regime model, one can conclude that, al-
though regime labels can be assigned to the clusters and the model is feasible,
the prediction performance of the model falls somewhat behind.

Five-Regime Models

This section discusses experiments on regime models based on five regimes.
First, the optimal number of Gaussians is determined, after which further
analysis is done on the best performing five-regime models.

Determining the Optimal Number of Gaussians

Figure 5.6 shows the course of regime probabilities during the game for
models trained on data on low-, mid-, and high-range products. For each
model, five regime clusters have been identified. It is clear that different
numbers of Gaussians lead to different courses of regime probabilities. Also,
regimes tend to switch more often. Again, regime clusters are labeled by
means of a correlation analysis quite similar to the analysis discussed for
three-regime models. Details of the correlation studies for five-regime models
are given later on.
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Models trained with three Gaussians do not perform well at all. For mid-
range products, the model tends to remain indecisive, since the estimated
probabilities for each regime cluster stay close to each other throughout the
game. For low-range and high-range products, the probabilities of three
regimes are close to each other, whereas the other two regimes always have
high probabilities. For each model holds that the game only knows approx-
imately two dominant regimes. These regimes are extremes to each other,
e.g., scarcity versus extreme oversupply for products of the high-segment.
Three Gaussians seems to result in a very bad fit on our data.

Five-Gaussian models seem to perform better, but still not convinci-
ble. For each product segment, a clear dominant regime can be estimated
daily. However, for high-range products, two dominant regimes are identified
(apart from an almost negligible third), which are the two extreme variants
of scarcity and oversupply. This does not seem to be a feasible model. As for
the other two evaluated product segments, the course of regime probabilities
over game time looks feasible. However, for a few other agents and games,
probabilities similar to the high-range model are returned.

Gaussian Mixture Models based on ten individual Gaussians perform
well. Although not all regime clusters are used in each model, there is
no hopping between extreme regimes as we encountered with other models.
Note that for most other games and agents all regime clusters are used; these
games give nice patterns of the distribution of regime probabilities over game
time. The graph of estimated regime probabilities for the low-range product
segment reveals that the identified dominant regime at the beginning of the
game is not extreme scarcity, but scarcity. This might be caused by the fact
that the differences between these two regimes are relatively small for this
product segment. However, this is just a minor issue, since both regimes
represent a certain extent of scarcity.

According to the plots in figure 5.6, models with fifteen and twenty-
five Gaussians perform well at first sight. However, (extreme) scarcity
regimes are not always used and their probabilities remain approximately
zero throughout the game. As is the case with the three-regime models,
overfitting occurs with other agents and games. For instance, the third
agent in the third game of our test set (769tac02), as well as the first agent
in the first game (761tac02) return the same dominant regime for almost
every single day.

This being said, models built on fifteen or twenty-five Gaussians do not
suit our needs well. Furthermore, three-Gaussian models have low perfor-
mance, possibly caused by the fact that there are more clusters than Gaus-
sians. If we fit Gaussian Mixture Models using five Gaussians, we see too
few different dominant regimes in a game on a general basis. This leaves
our ten-Gaussian models, which perform reasonably, although not perfectly.
On a general note, a lot of regime skipping (“hopping”) occurs in many re-
gime models, but apparently we cannot avoid that. Supported by the latter
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observations, we choose to select a total number of ten Gaussians to be the
best setting for a five-regime model.

Further Analysis of the Selected Models

Now that we have determined the number of Gaussians which possibly yields
good regime models when five regimes are to be identified, we can take a
look at the characteristics of these models, after which we can continue
evaluating the performance. Figure 5.7 shows the Gaussian Mixture Model
fit on low-range product data from the training set using ten Gaussians.
Again, the Expectation-Maximization algorithm as mentioned in chapters 2
and 4 is used for determining the optimal values of the model’s parameters.
Fitting for mid-range products produces a model which looks similar to
this model, i.e., low probability densities and one clear peak. A Gaussian
Mixture Model fit on high-range product data results in a model with higher
probability densities and lacks a clear peak.

As we take a look at the posterior probabilities for each low-range prod-
uct regime cluster in figure 5.8, we notice – in contrast to our observations
for the three-regime model – that there are clearly dominant regimes for
nearly any combination of sales and offer prices. Note that some clusters
are dominant on a larger area than other clusters. The models for mid-range
and high-range products result in less complex posterior probability plots.

The daily entropies of the observed game (792tac01) and agent (iden-
tification number 11) from the test set are shown in figure 5.9. The rela-
tive difference between the daily entropy values and the maximum entropy
(which is equal to log2 5, i.e., approximately 2.3219) is on average lower
for five-regime models than for three-regime models. This can also be con-
cluded using the average relative entropies in table 5.3, which indicates that
identification with three-regime models fit using five Gaussians results in a
higher average relative entropy than with five-regime models based on ten
Gaussians.

Except for the high-range products model, the moving average of the
entropies remains the same throughout the game, so on a time frame of about
ten days, approximately the same average entropy holds. The regime model
fit on low-range product data has a higher volatility than the mid-range
products model, illustrated by some large spikes about halfway through the
game (and on).

In contrast to the three-regime models, all evaluated five-regime models
show no clear difference between mid-game confidence and the confidence
of the estimations at the beginning of a game. The latter confidence was
high for all three-regime models, but is low for all five-regime models. This
could be caused by the fact that extreme scarcity and scarcity regimes are
close to each other, and therefore their probabilities are close to each other,
leading to a higher entropy and thus a lower confidence.
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Figure 5.7: A two-dimensional Gaussian Mixture Model on mean sales price
and mean procurement offer price, using ten Gaussian components, with no
fixed means and variances. This model is trained with a maximum of fifteen
hundred iterations on training data (table 3.1) on the low product segment.

Figure 5.8: Regime probabilities (given mean sales price and mean procure-
ment offer price) for low-range products, resulting from a two-dimensional
Gaussian Mixture Model, of which its posterior probabilities are clustered
in five clusters. The probabilities are based on training data (table 3.1).
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(c) high-range

Figure 5.9: Daily entropies of the estimated regime probabilities for a specific
game (ID 792tac01) and a typical agent (ID 11) using test data (table 3.1).
Regimes are estimated based on clustered regime probabilities resulting from
a two-dimensional Gaussian Mixture Model with ten individual Gaussians.
Five regimes are identified.

Furthermore, the model fit on high-range product data shows an increase
in confidence (i.e., we observe an entropy drop) halfway through the game,
which declines again near the end of the game. We did not observe this
for three-regime models in figure 5.4. The sudden change in confidence can
also be derived from figure 5.6, where the high-range ten-Gaussian model
identifies an extreme oversupply regime with a high probability for a long
time.

Labeling the regimes is done the same way as for three-regime models
by using correlation analyses. As stated earlier, these correlation studies
are applied to each model shown in figure 5.6, so that a proper label can be
assigned to each regime cluster. We now continue with elaborating on the
correlation studies performed on five-regime models based on a Gaussian
Mixture Model with ten individual Gaussians.

Figure 5.10 shows the Pearson’s correlations of the identified regime
clusters of a model trained on low-range product data with several regime
indicators. Again, the p-values for the correlation analysis are all less than
0.01. The correlations are similar to those of the model trained for mid-
range products. The high-range product model results in slightly different
correlations for the oversupply regime. The same market parameters and
variables are used as indicators as is the case with three-regime models.

Looking at the graph, we see very similar results to those presented
earlier for three-regime models (figure 5.5). The main difference is that
for scarcity and oversupply extreme variants have been added. They share
characteristics with their non-extreme variants, but show slightly different
correlations (positive or negative).

Again, as is the case with three-regime models, the balanced regime
shows low positive and negative correlations with all indicators. Also, pro-
curement-side offer prices show different correlations with the each regime
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Figure 5.10: Correlation coefficients of identified regime clusters, resulting
from a two-dimensional Gaussian Mixture Model with ten individual Gaus-
sians created based on low-range product data. Five regimes are identified.

and do not follow the correlations of the normalized mean sales-side prices.
we notice that the mean offer prices do not always correlate in a logical way
with the regimes.

Both oversupply regimes are strongly and positively correlated with time,
the amount of finished goods available, and the offer ratio. The extreme
oversupply regime is more correlated with time than the oversupply regime,
indicating that extreme oversupply mostly occurs towards the end of a game
and that in end-game situations the probability of having an extreme over-
supply regime is higher than the probability of having an oversupply regime.
Also, a lot of finished goods are available and the offer ratio is high in both
oversupply situations, which is according to the associated economic theory.
There is a negative correlation with factory utilization in extreme oversup-
ply situations, which means that factories are used less in these situations.
Oversupply regimes show a less strong (negative) correlation with factory
utilization. Finally, there is a (strong) negative correlation with normalized
mean prices and mean procurement offer prices, which indicates low prices.
The characteristics of both oversupply regimes match those elaborated on
in [17].

Scarcity regimes also show resemblances with the regime characteristics
shown in [17]. In contrast to (extreme) oversupply, scarcity is more likely to
occur in the beginning of a game. Extreme scarcity occurs less when a game
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starts. Finished goods and offer ratio show a strong negative correlation,
which means that there is a lack of finished goods and the offer ratio is
low. For extreme scarcity situations, the correlation with finished goods
is about the same as for scarcity situations, but offer ratios show stronger
correlations. Sales prices show a strong positive correlation, indicating high
prices. Again, extreme scarcity shows stronger correlations than scarcity.

Plots of the course of estimated regime probabilities using the current
regime model for the same agents and the same game as in figure 5.6 give us
more insight in the feasibility of the new regime model. Figure 5.11 shows
estimated regime probabilities for the three evaluated product segments. A
one-dimensional Gaussian Mixture Model based on sixteen Gaussians (using
fixed means and variances) is used to estimate the regime probabilities of
five regimes using normalized mean sales prices.
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Figure 5.11: Course of estimated regime probabilities during an arbitrary
game (ID 792tac01) for a typical agent (ID 11) for low-, mid-, and high-
range products. The number of clusters (M) used in the one-dimensional
Gaussian Mixture Model (based on normalized mean sales-side prices) is
five, whereas the number of Gaussians (N) is equal to sixteen. Fixed means
and fixed variances are used.

If we compare figures 5.6 and 5.11, we observe that the estimated regimes
differ. Furthermore, the volatility of the current and new regime models is
similar, as well as some regime switching moments. Mostly, the models
differ in the identified (dominant) regime. The identified regime in the
current model is often close to the identified regime in the new model, e.g.,
a scarcity situation in the current model versus an extreme scarcity situation
or a balanced situation in the new regime model. This means regimes are
identified differently, which can possibly mean improvements in the agent’s
overall performance.

It should be noted that comparing identified regimes of the new regime
model with those of the current regime model does not tell much about the
quality of the new regime model. For instance, if the identified regimes are
exactly the same, one could wonder whether adding procurement informa-
tion influences the regime model. However, identical regime probabilities
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could also just be a coincidence, emerging when procurement information
takes on the right values. Therefore, one can only use these comparisons to
observe characteristics such as volatility.

Looking at the prediction performance of the selected regime model
(compared to the performance of the current model), one can observe small
improvements, as well as small deteriorations. This observation is supported
by table 5.5. Here, the accuracy measured in a percentage of correctly pre-
dicted regimes and regime switches. The table shows the performance of
the new model compared to the current model for three market segments
(i.e., low-range, mid-range, and high-range products). The score of the best
performing model is printed bold.

Correct Market New model Existing model
Regime Low-range 46.43% 51.86%

Mid-range 40.63% 52.93%
High-range 40.48% 41.91%

Time Low-range 48.68% 52.78%
Mid-range 53.00% 43.44%
High-range 50.93% 46.30%

Table 5.5: Prediction performances of a two-dimensional Gaussian Mixture
Model with five clusters and ten individual Gaussians (new model) com-
pared to the performance of a one-dimensional five-cluster Gaussian Mix-
ture Model with sixteen individual Gaussians (existing model). Results are
shown for three market segments and are based on test data (table 3.1).

In contrast to the prediction performance of the two-dimensional three-
cluster Gaussian Mixture Model discussed earlier, this model predicts regime
switches slightly more accurately than the current model (most of the time).
Also, regimes are predicted with a lower accuracy than the current model.
The differences between the performances are smaller than we have seen
with the three-regime model compared to the current regime model.

As is the case with three-regime models, correlation studies on five-
regime models show that regime labels can be assigned to the identified
regime clusters. Furthermore, the entire analysis of the selected model dis-
cussed above shows that a regime model based on normalized mean (sales)
prices and procurement-side offer prices is feasible when Gaussian Mixture
Models are fit on data using ten individual Gaussians and when five regime
clusters are identified. Also, predicting future regimes and regime switches
is about as accurate as is the case in the current regime model.

We observe that the addition of procurement information does not cause
instable regime models. Because the models are trained differently than the
existing regime model, they will give other outputs during a game. Thus,
it is likely our new regime model will influence the game results, but we
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cannot predict at this point whether the amount of cash at the end of a
game will be higher or lower, and thus whether there is any advantage
to using procurement information. However, we can state that we do not
loose much stability when using a new regime model instead of MinneTAC’s
existing regime model.

5.1.3 Offline Regime Experiments Conclusions

After analyzing several different regime models, we find that none of the
analyzed models perform perfectly, so in order to be able to select feasible
regime model configurations, it appears we have to find a balance between
low entropies (i.e., high confidence), plausible courses of estimated regime
probabilities and computation time. Therefore, we continue our research
with our second configuration.

We have presented two possible configurations of regime models to be
used in an online game environment. Our first configuration is based on three
regimes and five individual Gaussians, whereas our second configuration
is based on five regimes and ten individual Gaussians. All other GMM-
and clustering-specific parameters can be found in table 5.1 (section 5.1.1).
The confidence of our second configuration is higher than the confidence
of our first configuration. Now we continue our research with our second
configuration.

5.2 Online Regime Experiments

Now that an optimal regime model configuration is determined, we can
implement and test this configuration in the MinneTAC trading agent. This
section elaborates on the experimental setup of our online experiments and
on the experimental results.

5.2.1 Experimental Setup

In contrast to the experiments in the previous section, no history games are
used, but newly run games. Online experiments are done by implementing
the new regime model in the agent and by running test games with the
MinneTAC agent using the current and the new regime model.

Agents and Games

Besides the fact that there is no need to train models based on game data
which are available from the game servers and that new games need to
be run instead, online experiments differ from the offline experiments in
several ways. First of all, offline experiments are conducted per market
segment, but online experiments are done at the individual product level.
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This allows an agent to be more reactive in the supplier market, because the
products belonging to a certain market segment can have different regimes,
for instance caused by a shortage of a certain component which is not used
by all products in a market segment. Furthermore, the offline experiments
do not use ensemble prediction, but online this type of prediction is easy to
implement and gives more accurate results. Even so, the most recent agent
configurations, one of which is used as a benchmark, all implement ensemble
prediction.

For benchmarking purposes, we run a number of games with the config-
uration of the 2008 MinneTAC agent, where regime prediction is done using
the three prediction algorithms which are introduced in chapter 2, i.e., ex-
ponential smoother prediction, Markov prediction, and Markov correction-
prediction. For the sales-related tasks the regimes are used for, the agent
is constructed in a way such that means and trends follow from each of the
predictors. These predicted means and trends are used for (for example)
product pricing. The predictors each identify yesterday’s regime and predict
future regimes based on the prediction techniques explained in chapter 2.

Our own MinneTAC variant is almost equal to the benchmark agent. The
two agents only differ in the used predictors, since our MinneTAC variant
implements the new regime model and thus requires other predictors. As is
the case with the predictors used in the offline experiments, the implemented
predictors of the MinneTAC agent are exactly implemented as defined in the
framework proposed in chapter 4, in contrast to the predictors used in the
current version of MinneTAC which is used for benchmarking purposes.
However, as stated earlier, we use ensemble prediction in online predictions.

By changing the predictors only, the effect of the new regime model can
be measured most accurately, since no other changes are made. In case
experiments are conducted and analyzed properly, changes in for instance
game results can be attributed to the changes made in the regime model of
the MinneTAC agent.

As stated earlier, we need to run new games in order to be able to
analyze the performance of the new regime model online. Figure 5.12 breaks
down the online experiments into competitor sets, experiment sets (and their
associated seed sets), and MinneTAC variants.

A number of games are played against different sets of competitors (ω).
We choose two sets of competitors, i.e., a set of easy competitors and a set of
tougher agents, so that the effects of the new regime model can be measured
in different environments.

Because of randomness in each game, we need to select a number of dif-
ferent sets of game seeds randomly (ρ). These sets are used for each variant
of the agent (θ) and are the same in the different sets of competitors. Recall
that we have two agent variants, i.e., the benchmark agent and an agent
configuration implementing the new regime model. The usage of seed sets
enables us to run TAC SCM games where exactly the same characteristics
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Figure 5.12: Experimental setup of online experiments, where ω refers to
the number of competitor sets, ρ refers to the number of seed sets (which
are linked to experiment sets), and θ refers to the number of MinneTAC
variants.

– such as bank interests and storage costs – hold. Thus, it is possible to re-
play a certain game with the same competitor set and game characteristics,
but with a different MinneTAC configuration. In other words, each game
scenario (a certain seed set) is run for both agent variants, so that the effect
of the new regime model can be evaluated.

In order to reduce the effect of randomness in the agents’ behavior, we
need to run a significant number of experiment sets. Because of the time
constraints for this thesis, we run forty experiment sets per competitor set.
The number of games to be run boils down to eighty individual games per
set of competitors, and thus a total number of one hundred and sixty games
are to be run.

Table 5.6 shows the main settings of the online experiments. The games
run in the experiments follow the TAC SCM 2006 game specifications [13],
which are also discussed in chapter 2. In our experiments, we refer to the
benchmark agent as BENCH, whereas the new MinneTAC agent using the
new regime model is referred to as RIPPI, which is an acronym for Regime
Identification and Prediction using Procurement Information, to distinguish
between the current regime model – which only uses sales information – and
the adapted regime model.

As stated earlier, both the benchmark agent and the new agent config-
uration are tested against two sets of competitors. The competitors in the
first set are dummy agents, which are merely very basic agents supplied by
the TAC SCM game. The agents only send one RFQ for components to
a randomly selected supplier and accept each offer. Furthermore, dummy
agents apply a random factor when determining customer RFQ offer prices
and handle customer orders in due date order [44].

The competitors in the second set are competitors which are discussed
in chapter 2. Since there is no binary version of the CMieux agent publicly
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Property Value
Game specifications TAC SCM 2006
MinneTAC variants (θ) 2, which are:

{BENCH, RIPPI}
Competitor sets (ω) 2, which are:

{Dummy-1, Dummy-2, Dummy-3, . . .
Dummy-4, Dummy-5}, and

{TacTex07, Crocodile05, DeepMaize07, . . .
PhantAgent07, Mertacor05}

Experiment sets (ρ) 40, using randomly selected game seeds

Table 5.6: Overview of settings for online game experiments.

available, but the other agents discussed in this thesis have released binary
versions [45], TacTex, CrocodileAgent, DeepMaize, PhantAgent, and Mer-
tacor are included in the competitor set. The latest available binaries at the
time of writing are used, so for CrocodileAgent and for Mertacor this means
the 2005 binaries are used, whereas for the other agents holds that the 2007
binary versions are used.

Evaluation

For evaluation purposes, the agent’s amount of money in cash at the end of
each game is measured, together with the associated total orders placed by
customers. For each participant in games played with a certain competitor
set, the mean and standard deviations for each variable are calculated, to
give an indication of the game characteristics.

For the MinneTAC agent, the results of the benchmark variant (BENCH)
and the new variant (RIPPI) are compared. The average alteration of cash
and orders (both absolute and relative) are considered. We define the mean
absolute change in cash as

absChCash =

∑numQ
q=1 cashRIPPIq

numQ
−
∑numQ

q=1 cashBENCHq

numQ
, (5.7)

where q refers to a game, numQ represents the number of games, and
cashRIPPIq and cashBENCHq contain MinneTAC’s amount of cash at the
end of game q for the RIPPI variant and the BENCH variant, respectively.
The mean absolute change in orders is defined similarly:

absChOrders =

∑numQ
q=1 ordersRIPPIq

numQ
−
∑numQ

q=1 ordersBENCHq

numQ
. (5.8)

In the latter equation, q and numQ refer to a game and the number of
games, respectively. Furthermore, ordersRIPPIq and ordersBENCHq repre-
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sent MinneTAC’s total number of orders at the end of game q for the RIPPI
variant and the BENCH variant, respectively.

Relative changes are calculated using the absolute mean changes in (5.7)
and (5.8). Here, we divide the absolute mean changes in cash and orders by
the absolute (non-negative) mean of the BENCH results, which is written
out in (5.9) and (5.10):

relChCash =

∑numQ
q=1 cashRIPPIq

numQ −
∑numQ

q=1 cashBENCHq

numQ∣∣∣∣∑numQ
q=1 cashBENCHq

numQ

∣∣∣∣ , (5.9)

relChOrders =

∑numQ
q=1 ordersRIPPIq

numQ −
∑numQ

q=1 ordersBENCHq

numQ∣∣∣∣∑numQ
q=1 ordersBENCHq

numQ

∣∣∣∣ . (5.10)

If the average amount of money in cash (i.e., the agent’s bank account) at
the end of a game or the average total number of orders placed by customers
is larger for RIPPI than for BENCH, this is considered as an improvement.
Otherwise, the change is a deterioration of the game results.

However, a difference alone in cash or orders does not say much about
the effects of the new regime model, because it can be a coincidence that
the agent performs better or worse on average, for instance because of an
outlying result. Therefore, we need to apply a statistic to evaluate the
significance of the difference between both variants of the MinneTAC agent.
Differences are considered to be significant when it is unlikely they have
occurred by chance. In statistics, the paired T-test is often used for this
purpose. However, this is a parameterized test, which requires or assumes
the samples to be from the same normal distribution.

In [17], the Wilcoxon paired two-sided signed rank test is used to assess
significance between experiments. This statistic is unparameterized and,
in contrast to the paired T-test, does not require its samples to be from
a normal distribution. This is most suitable to our experiments. The test
hypothesizes that the difference between the two samples (i.e., mean cash or
orders of BENCH and RIPPI) comes from a continuous, symmetric distri-
bution with a median of zero. Rejecting this hypothesis (for a p-value of less
than 0.05) means that the two samples significantly differ from each other
and expresses a certain significance.

Therefore, improvements (or deteriorations) of game results measured
using the absolute or relative difference between the benchmark agent and
the new MinneTAC agent, are considered to be proven when they are sig-
nificant. Otherwise, the executed changes to the regime model (i.e., adding
procurement information) are not likely to have a large impact on the game
results of the agent.
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Measure Agent
Mean All participants
Standard deviation All participants
Mean absolute change MinneTAC
Mean relative change MinneTAC
Signed rank test MinneTAC

Table 5.7: Overview of evaluation methods for online game experiments,
which are employed for each competitor set, for both available amount of
money in cash (bank account) at the end of a game and the total number
of customer orders to the agent.

The performance measures used per competitor set for both cash and
customer orders are summarized in table 5.7. Now that we have defined the
settings of our online games and our evaluation criteria, we can go on to
presenting the experimental results in section 5.2.2.

5.2.2 Experimental Results

After running forty games against TAC SCM dummy agents for both Min-
neTAC configurations (i.e., the benchmark configuration which implements
the current regime model and the new configuration which implements the
new regime model), we see that, not surprisingly, the MinneTAC agent out-
performs the dummy agents. This is supported by table 5.8, where the
agents are ranked on performance. The scores of the dummy agents show
strong resemblances among themselves, which makes sense, since they all
have the same characteristics.

Cash (×1000) Orders
BENCH RIPPI BENCH RIPPI

MinneTAC 20,307 (13,247) 16,475 (5,744) 2,995 (1,245) 3,824 (628)
Dummy-3 12,477 (3,904) 13,780 (2,902) 3,242 (338) 3,165 (281)
Dummy-5 12,558 (3,791) 13,699 (3,102) 3,237 (367) 3,158 (309)
Dummy-2 12,407 (3,782) 13,839 (3,113) 3,227 (334) 3,171 (307)
Dummy-4 11,925 (4,921) 14,029 (2,981) 3,207 (339) 3,185 (307)
Dummy-1 12,139 (4,234) 13,777 (2,694) 3,248 (317) 3,152 (294)

Table 5.8: Overview of the game results of each participant. Forty games are
run for both configurations of MinneTAC (i.e., BENCH and RIPPI) against
the same set of (dummy) competitors. Results are shown for the amount of
money in cash at the end of a game and the associated number of customer
orders (rounded mean and standard deviation).
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Measure Cash Orders
Overall change (absolute) -3,832,396 829
Overall change (relative) -18.8721% 27.6926%
Signed rank (p-value) 0.0878 0.0003

Table 5.9: Overview of the change in performance of the MinneTAC agent.
Forty games are run for both configurations of MinneTAC (i.e., BENCH and
RIPPI) against the same set of (dummy) competitors. Results are shown
for the amount of money in cash at the end of a game and the associated
number of customer orders.

However, for MinneTAC, we observe a decrease in the mean available
amount of money at the end of a game when using the new regime model
for sales-related decision making instead of the current regime model. We
observe a larger increase in the average number of customer orders placed
with the MinneTAC. The average absolute and relative changes are displayed
in table 5.9.

In order to be able to classify the increase in the number of customer
orders and the small increase in the amount of money as significant changes,
we apply the Wilcoxon paired two-sided signed rank test. Here, the null hy-
pothesis we need to reject is that the difference between the game results of
both tested MinneTAC variants comes from a continuous, symmetric distri-
bution with a median of zero. Not being able to reject the null hypothesis
means that the difference of the results is too small to be classified as sig-
nificant.

We set the significance level to 5%, which means that p-values returned
by the signed rank test below 0.05 reject the null hypothesis. Any other
values fail to reject the hypothesis. Applying the Wilcoxon signed rank test
to the agent’s bank account balance at the end a game results in a low p-
value: 0.0878. However, the value is not below 0.05 and thus this means
the decrease in money is not significant enough, and could have occurred by
chance. Still, the odds are that the new regime model leads to a decrease in
cash, because of its low p-value. The number of customer orders however,
has increased significantly. The p-value for orders is about 0.0003, which is
a strong evidence that the improvement is not a coincidence.

According to table 5.10, games run against competitors which are more
intelligent and harder to compete with than the TAC SCM dummy agents,
such as PhantAgent and TacTex, turn out to be very tough competitions.
The average amount of money for each agent is lower than we have seen in
the dummy games. The average number of customer orders per agent also
indicates fierce competition, especially in combination with the low amount
of money. It appears that products are sold against lower prices and thus
optimizing sales-related (supportive) decision processes, such as the regime
model, becomes more important.
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Cash (×1000) Orders
BENCH RIPPI BENCH RIPPI

PhantAgent07 8,510 (6,033) 8,770 (6,813) 6,411 (468) 6,392 (417)
TacTex07 7,708 (6,432) 7,979 (7,695) 6,756 (373) 6,500 (512)

DeepMaize07 3,248 (3,656) 3,534 (3,842) 4,524 (820) 4,271 (1,000)
Mertacor05 1,515 (4,754) 1,398 (5,263) 5,857 (620) 5,645 (712)
MinneTAC -746 (5,310) -1,273 (3,343) 3,735 (863) 4,461 (357)

Crocodile05 -2,251 (6,340) -2,221 (7,824) 6,361 (548) 6,245 (572)

Table 5.10: Overview of the game results of each participant. Forty games
are run for both configurations of MinneTAC (i.e., BENCH and RIPPI)
against the same set of (tough) competitors. Results are shown for both the
amount of money in cash at the end of a game and the associated number
of customer orders (rounded mean and standard deviation).

In contrast to the dummy games, MinneTAC is not able to beat the other
agents in a set of forty games. However, as is the case in the games played
against TAC SCM dummy agents, the new MinneTAC variant (RIPPI) gen-
erates lower profits (measured in terms of available money in cash) and an
increase in the number of customer orders when compared to the benchmark
variant.

Table 5.11 shows that the average decrease in money is about seventy-
one percent, whereas the total amount of associated customer orders (market
share) increases on average with about nineteen percent. Again, we test the
significance of the observed changes using the Wilcoxon paired two-sided
signed rank test. It appears that the decrease in money is very likely to
have occurred by chance and thus the expected generated amount of money
in cash at the end of a game is more or less equal for both variants of
MinneTAC. On the other hand, the significance of the increase of orders has
been proved, which supports the findings for the dummy games that the
number of customer orders are likely to increase when using the new regime
model.

Measure Cash Orders
Overall change (absolute) -527,209 725
Overall change (relative) -70.6552% 19.4132%
Signed rank (p-value) 0.1254 0.0000

Table 5.11: Overview of the change in performance of the MinneTAC agent.
Forty games are run for both configurations of MinneTAC (i.e., BENCH and
RIPPI) against the same set of (tough) competitors. Results are shown for
both the amount of money in cash at the end of a game and the associated
number of customer orders.
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5.2.3 Online Regime Experiments Conclusions

In our online experiments, two game environments have been considered.
The first environment is an easy environment, in which the MinneTAC vari-
ants (a benchmark configuration containing the old regime model and a new
configuration containing the new regime model) have been tested against
relatively easy competitors, i.e., TAC SCM dummy agents. The second en-
vironment is a highly competitive one, in which MinneTAC competes with
tough competitors, which belong to the current top performing agents. Al-
though the environments are different, experimental results are more or less
comparable.

We conclude that the number of customer orders to the MinneTAC agent
increases significantly with roughly twenty-five percent. This improvement is
less noticeable in highly competitive games. Furthermore, there is a slightly
insignificant decrease in the amount of money for nineteen percent in games
played against dummy agents. In contrast, we observe an insignificant but
large decrease in profits of around seventy-one percent when competing with
well performing artificial trading agents.

The p-values resulting from the Wilcoxon paired two-sided signed rank
tests (used for measuring significance of changes) are more or less equal in
both environments for orders, i.e., changes are very significant, as well as for
MinneTAC’s bank account balances at the end of a game. The significance
of the latter changes is not high enough, but will increase when increasing
the number of experiments.

5.3 Regime Experiments Conclusions

In our experiments presented in this chapter, we have evaluated several
configurations of regime models offline. Some of them are based on three
regimes, and others are based on five regimes. The regime models perform
about the same as the current regime models, but now they are also based
on procurement information. Because of their performances, regime models
based on both sales and procurement information are likely to perform well
online.

Therefore, the best performing regime model, i.e., a two-dimensional
five-regime Gaussian Mixture Model based on ten Gaussian components, has
been selected to be implemented in the MinneTAC agent. Using the new
regime model in the MinneTAC agent, we have run several games against
different competitors while using different seed sets to simulate varying game
characteristics. It seems that when using the new regime model MinneTAC’s
market share increases significantly due to an increase in the number of
customer orders linked to MinneTAC, but the amount of money at the end
of a game is somewhat likely to, but does not necessarily have to be affected.
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Chapter 6

Discussion

This chapter discusses the results of both offline and online regime identifi-
cation and prediction experiments. Section 6.1 discusses our offline experi-
ments, whereas section 6.2 elaborates on our online experiments. Section 6.3
summarizes the discussions.

6.1 Offline Regime Experiments

This section discusses the results of offline regime identification and pre-
diction experiments and elaborates on various subjects, such as entropies
(section 6.1.1) and regime hopping (section 6.1.2). Also, correlations and re-
gime labeling are discussed in section 6.1.3, as well as identifying the correct
number of regimes (section 6.1.4). Finally, the results of regime prediction
are discussed in section 6.1.5.

6.1.1 Entropy

Although the entropy has been introduced as a measure for the quality of a
regime model, it only measures the quality partially. As stated in chapter 5,
the entropy measures the “confidence” of a model, or in other words, how
certain the model is of its own predictions. In case of low entropy values, the
model’s confidence is high, and in case of high entropy values, the confidence
is low. The entropy returns low values if one regime has a high probability
(given normalized mean sales price and mean offer price) and the other
regimes have low probabilities. However, if a model has great confidence
(low entropy), it does not say anything about the quality of the model in
terms of the correctness of the predicted regime probabilities or dominant
regimes.

Therefore, we cannot use the entropy values as a measure by itself, but
we have to take into account the feasibility of the course of estimated regime
probabilities as well, in order to be able to decide which models (i.e., which
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settings) perform well. Although the entropy might not be the best measure,
we can use it after we pre-selected promising models by looking at the course
of regime probabilities. In case of doubt, the model with the lowest entropy
can be selected.

Models with low entropy values (and many Gaussians) have shown to be
very confident about their regime identifications. However, plots on their es-
timated regime probabilities over time tell us something different and some-
thing valuable, which supports our statement that having low entropies does
not imply being a good model, since incorrect regimes can be identified. Al-
though the regimes are identified with high confidence, it is clear that only a
few regimes are identified, often one regime for a great many of days in a row
(with almost full certainty) in an arbitrary game, which is rather unrealistic.

Another point of discussion is the fact that five-regime models are not
very confident about their identified regimes in the beginning of the game
and mostly, their confidence does not change very much over game time.
This could be caused by the fact that the five regimes look a lot like each
other (e.g., extreme scarcity and scarcity), and therefore “related” regimes
will generate high probabilities, resulting in somewhat higher entropies as
is the case with three-regime models.

6.1.2 Regime Hopping

We notice a lot of regime hopping occurs in five-regime models. Regime
hopping is defined as skipping one or more intermediary regimes during a
regime switch. We believe that regime hopping could be caused by the
fact that a variable (or dimension) has been added to the model. If we
look closely to the way the current model works, we see that no regime is
skipped at any time. By adding a variable, we can all of a sudden hop from
one regime to the other regime. Perhaps this is caused by the fact that on
an arbitrary game day, the procurement information tells us a big regime
change is coming, even though the sales prices don’t show us that (yet). This
would mean that the added information actually adds value to the regime
model.

To a certain extent, regime hopping might not be so strange as it ap-
pears. In the existing model, a single continuous variable is used which has
a complete ordering, and thus hopping is not possible. Now we have two
continuous variables. These variables have partial ordering, which is why
hopping is possible.

In our new three-dimensional space, where regimes could be located
(partially or fully) behind one another, and therefore a small change in
a value of one variable (dimension) could mean a large regime switch. In
that case, one variable plays a large role in identifying economic regimes.
However, constantly hopping from one extreme regime to the other extreme
regime, as well as identifying the same regime over and over again does not
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make sense, because one of the properties of economic regimes is that they
change gradually over time.

6.1.3 Correlations and Labeling

In our correlation studies, we have seen that each regime’s correlation with
market properties gives us valuable information, since it is testable with
economic theories and heuristics. Our new regime clusters have the same
characteristics as the existing clusters, i.e., low sales prices, many finished
goods and a high (sales-side) offer ratio in oversupply situations, and high
prices, a small amount of finished goods and a low offer ratio in case of
scarcity situations. The balanced regime is always somewhere in between.

One could wonder whether the regimes are still the same as the current
regimes. In an economic sense, we still have the same regimes, because their
correlation coefficients match those elaborated on in [43] and [17]. The only
thing that has been changed is the fact that regimes are not only identified
based on the normalized mean (sales) prices, but also based on procurement
information, i.e., the mean procurement-side offer prices. Now, other data
points belong to the regime clusters than in the current model, which results
in different identified regimes.

A better question would be whether the regimes are still valid, because
one strange thing we noticed during our correlation experiments, is the fact
that the regimes do not correlate in a logical way with procurement offer
prices if we label regimes based on the correlations with the other indicators.
Other correlations with days, finished goods, factory utilization, offer ratio,
and sales order price make sense, but there appears to be some randomness
in the correlation with mean offer prices. In our understanding, these prices
should be correlated more or less the same way as normalized prices.

The randomness in the correlation can be caused by the fact that (some
of) the observed agents active in the games stored in our data set have
non-rational techniques for procurement-related decision making, causing
the offer prices (as well as order prices) to behave in a non-logical way.
It is hard to define regimes when taking the procurement offer prices into
account, and based on the other market parameters and the normalized
mean sales price, we believe that the regimes make sense.

6.1.4 Number of Regimes

In section 5.1.3 we decided to use five regimes in our regime model. Just by
looking at the average relative entropies, this decision would be questionable,
since three-regime models generally have lower entropies than their five-
regime equivalents. However, the relative entropy of the best performing
five-regime model is lower than the relative entropy of the best performing
three-regime model. This is caused by the fact that different numbers of
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Gaussians are used. But apart from that, as stated earlier in this discussion,
the entropy is not a measure on its own, but should only be used as a
guidance.

The MinneTAC agent has been using regime models which are based
on five regimes for quite some time now and these models have proven to
be successful. Furthermore, as stated by Ketter et al. [43], we can capture
exceptional situations with the extreme regimes.

Our adapted regime models with five regimes experience a lot of regime
hopping, whereas the three-regime models do not experience regime hopping
at all. As been discussed in this chapter, to a certain extent, regime hopping
does not make regime models infeasible.

Considering the latter observations, the decision of using a five-regime
model to do our online testing is correct. All we need to do in order to decide
which regime model performs best is to combine statistics (entropy) with
heuristics and common sense (graphs). In other words, configuring the new
regime model is all about finding a balance between low entropies, plausible
courses of estimated regime probabilities and computation time.

6.1.5 Regime Predictions

Although Ketter et al. [43] indicate that about eighty to ninety percent of
the predicted dominant regimes and regime switches is correct, repeating
the same experiments as done with the new regime models results in much
lower scores. This difference can be caused by the fact that we experiment
on 2007 and 2008 data, which contains different games than the ones used
in [43]. This may result in market conditions which are harder to predict,
because agents are getting more advanced every year, which causes other
decision making and thus different game characteristics.

Our experiments show that the the newly defined five-regime model
predicts regime changes more accurately than the three-regime model ana-
lyzed earlier. Nevertheless, with the data set used in this thesis, the two-
dimensional five-cluster Gaussian Mixture Model has a performance similar
to the currently used regime model. These observations are supported by
tables 5.4 and 5.5. We can conclude that the addition of procurement infor-
mation generally has no affect on the performance.

It should be noted that in some cases, the five-regime model predicts
future regimes worse than the current (sales-based) model. This may look
strange at first, but the observed performance hit can be explained by the
fact that the new model is characterized by two variables instead of one.
This means that the future course of two variables should be predicted,
which makes it easier to make mistakes. If the performance of the new
model is more or less the same as the current model, it could mean that the
model is feasible enough, since the model does not perform worse.
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However, the performance of the models with respect to prediction does
not tell us much about the effect the new models will have on the agent.
To a certain extent, if a model predicts its own future values correctly, the
model has a high predictive quality, which is desired. Nevertheless, we did
not change the applied techniques in the regime model, but we only changed
the regime definitions and extended some of the applied techniques. This
means we should expect more or less the same results when it comes down
to – for example – prediction performance. The agent’s performance will
not be influenced by the correctness of the predictions as much as by the
change in regime definitions, and therefore, having approximately the same
prediction accuracy as the current model does not mean the new model
cannot perform better than the current model.

6.2 Online Regime Experiments

In online experiments with an implementation of the new regime model
in the MinneTAC agent, we observed that the agent is able to survive in
markets with easy competitors, but fails to beat strong competitors such as
DeepMaize and PhantAgent. Generally, the amount of money in cash at
the end of the game is less than the amount the current agent is expected
to generate, whereas the number of customer orders is increased. This holds
for both evaluated game environments.

The fact that MinneTAC’s number of customer orders in a game changes
(increases) significantly when using the new regime model, but profits tend
to decrease – although not significantly – indicates there is a structural
error in pricing. Procurement information structurally distorts the price
trend estimation and thus the price to be set for customer orders. The
number of orders increases, but prices decline, which does not result in higher
profits. These phenomena are interrelated, since lower prices yield more
orders and more orders yield lower prices. On a side note, the significance of
performance changes can be improved by running more experiments. Tough
competitors seem to require more experiments than the TAC SCM dummy
agents.

Experiments show that the addition of procurement information to the
regime model of the MinneTAC trading agent changes the characteristics of
the agent, but does not result in increased profits. It is even possible profits
decrease when applying the new regime model. Since the performance of
agents in TAC SCM games is measured using their bank account balances
at the end of each game, one could conclude that MinneTAC’s performance
is not improved when using the new regime model.

However, this is not entirely true. The performance in terms of Min-
neTAC’s number of customer orders improves significantly. This is an op-
portunity the agent should make use of. If the order pricing mechanisms are
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improved, not only the number of customer orders is likely to increase, but
the bank account balances are likely to increase as well.

Besides a possible suboptimal pricing mechanism, a possible explanation
for the observed lower profits is the fact that the price density function which
is used for predicting price trends is merely a projection of a two-dimensional
density function. This causes loss of data and therefore, the extended regime
model might actually perform less accurately, especially because too low
price trends are likely to be estimated: MinneTAC sets unnecessary low
order prices, which leads to more customer orders, but also to lower profits.
Projection as it is done currently (by using maximum values) only works
well for non-rotated Gaussians, because in that case Gaussians have the
same shape in each projection. However, our regime models have rotated
Gaussians and thus applying a different type of projection is very likely to
improve performances.

Furthermore, there could be problems regarding the added procurement
information itself. In contrast to our assumption, this information – offer
prices of the MinneTAC agent – might not be representative enough for the
entire market, for instance due to non-standard behavior of MinneTAC. The
two-dimensional regime model is trained on market procurement information
and therefore, training the regime model on MinneTAC’s regime information
might help. This is, however, not guaranteed, because the agent still has a
limited view on what is actually going on on the market. Otherwise, it is
worth trying to train the regime model on a larger data set.

Another cause of the performance drop related to the procurement infor-
mation is the fact that only an average value of the offer prices on a specific
day is smoothed. Perhaps data should be smoothed as is currently done
with the normalized mean prices, i.e., by applying Brown linear exponen-
tial smoothing to minimum and maximum values. This type of smoothing
should give more accurate results.

Also, the calculated trend of the procurement information, which is used
in the exponential smoother prediction process, is in reality only a rough
indication of the trend and tends to be a very nervous estimation. This can
lead to biased procurement and sales decisions.

Subsequently, no normalization is applied to procurement information
currently. This non-normalized data could result in unwanted model behav-
ior, since the model is only trained for a certain offer price range. It might
be the case that during test games, prices exceed the minimum or maximum
values the regime model is trained for. Normalizing the data so that it is
always within a certain range could help improve the performance.

Finally, as the online experiments show that MinneTAC’s internal regime
model does not fit the reality in a game, we believe that introducing more
adaptivity to the regime model is likely to improve MinneTAC’s flexibility.
This way, feedback is also directly given to the regime model, which enables
MinneTAC to correct errors in estimations, which occur when market or
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game conditions cause deviations from learned patterns. Structural errors as
we have seen in our experiments are less likely to occur when good adaptivity
is introduced.

6.3 Discussion Summary

We have discussed several aspects of the offline and online experimental
results, such as the meaning and relevance of entropies and the occurrence
of regime hopping (i.e., skipping one or more intermediary regimes during
a regime switch). We conclude that regime hopping is feasible, because a
dimension has been added to the regime model, resulting in two continuous
variables which have a partial ordering.

Furthermore, the correctness of the assigned regime labels and the re-
lated number of regimes have been discussed. It is concluded that, although
there seems to be randomness in the correlation with procurement offer
prices, the regime labels are correct, as well as the related number of regimes.

Finally, offline regime prediction performance and the results of online
experiments have been put into perspective. We conclude that in our offline
prediction experiments, the new regime model shows similar performance to
the existing regime model. However, in online experiments the new regime
model seems to perform worse than the existing model. In this chapter,
we have discussed several possible causes of the performance hit in online
experiments, such as an insufficient projection of a two-dimensional model
onto a one-dimensional price density.
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Chapter 7

Conclusions

In this thesis, we have investigated the effects of adding procurement in-
formation to MinneTAC’s sales-based regime model. Using the information
gain metric, offer prices have been found to be the most valuable procure-
ment information with which MinneTAC’s regime model can be extended.
Extending the regime model has been done by adding a dimension to the
Gaussian Mixture Model which is the foundation of the regime model.

Offline experiments show that the extended regime model based on five
regimes and ten Gaussians should perform about the same as the current
regime model. It is concluded that it is not a trivial task to find an optimal
configuration of a regime model, but that a balance has to be found between
low entropy values (i.e., high confidence), plausible courses of estimated
regime probabilities and computation time.

Despite the promising results of offline experiments, online performance
of a MinneTAC agent implementing the sales- and procurement-based re-
gime model is not as good as we hoped for. Overall, it is likely (but not
significantly proven) that at the end of a TAC SCM game, the bank account
balance of an agent implementing the extended regime model is lower com-
pared to the amount of money of an agent using the current regime model.
However, the number of customer orders gathered during a game increases
significantly, so there is some improvement in performance. Unfortunately,
this development is not likely to lead to higher profits.

We suggest to evaluate the different causes of the decrease in performance
with respect to game profits in future research. For instance, because of a
structural error in the extended regime model, resulting in low prices to be
set, profits fall behind. We believe that the projection of a two-dimensional
model onto a one-dimensional price density is done insufficiently and requires
further research.

Also, introducing adaptivity or other pricing mechanisms, combined with
the extended regime model could eventually lead to increased profits. Fi-
nally, it is possible to train the regime model on more or different pro-
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curement information. Not only other data (e.g., offer quantities), but also
other smoothing techniques applied to offer prices fall within the scope of
the meaning of different procurement information.

Applying fuzzy C-Means clustering for determining regimes and adding a
fuzzy interpretation of regimes to MinneTAC’s regime model is something we
will leave for further research as well. We believe that this will have a great
impact on the way regimes are to be interpreted by the agent, because then,
multiple regimes can hold partially at the same time. Finally, it is worth
researching the use of procurement information in sales decision processes
without a regime model, or even the use of this information in completely
different decision processes of artificial trading agents.
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