ErASMUS UNIVERSITY ROTTERDAM
ERASMUS SCHOOL OF ECONOMICS

2afns

= ERASMUS UNIVERSITEIT ROTTERDAM

MASTER THESIS IN DATA SCIENCE AND MARKETING ANALYTICS

Recommender systems: A comparison
between user-based and item-based
one-class collaborative filtering models

Author: Supervisor:

K. de Gruiter prof. dr. S.I. Birbil

Student ID: Second assessor:

413160 dr. S.L. Malek
Abstract

This paper examines the performance difference between user- and item-based recom-
mendations, when computed in a One-Class Collaborative Filtering setting. The methods
used are user- and item-based collaborative filtering and association rule mining. After com-
puting top-N recommendation lists, the methods are compared based on their mean absolute
error, precision, recall and F-measure. The results indicate that, in general, item-based rec-
ommendations outperform their user-based counterparts. However, these results are subject
to a very skewed item popularity distribution, leading to the fact that we cannot assume a
performance gain of using collaborative filtering methods over just recommending the most

popular items.

Keywords: Recommender systems, One-class collaborative filtering, Unary purchase data

Thursday 25" March, 2021

The content of this thesis is the sole responsibility of the author and does not reflect the view of either

the Erasmus School of Economics or Erasmus University.

Contents

1 Introduction

2 Literature Review
2.1 Recommender input
2.2 Recommender systems Lo
2.2.1 Content-based filtering oo
2.2.2 Memory-based collaborative filtering
2.2.3 Model-based collaborative filtering

2.3 Literature summary Lo

3 Data
3.1 Data description

3.2 Train and test set e

4 Methodology
4.1 Resampling methods L Lo
4.2 Nearest neighbour recommendations
4.2.1 User-based nearest neighbour recommendations
4.2.2 Item-based nearest neighbour recommendations
4.2.3 Nearest neighbour parameter tuning
4.3 Association rule mining

4.4 Evaluation metrics e e

5 Results
5.1 Nearest neighbour CV results,
5.2 Testsetresults
5.3 Alternative subset results

5.4 Transformed rating results Lo Lo

6 Conclusion

References

© 0 N O O Ot

10
10
13

14
14
15
15
17
17
17
18

20
20
22
25
27

28

30

1 Introduction

Nowadays, choosing which product to buy can be a challenging decision. The popularity of
online shopping has led to an enormous amount of different products available and customers
are continuously comparing different products, brands or retailers in order to maximize their own
utility (Zhou et al., 2007). Because of this competitive nature characterizing online shopping,
it is very important for retail companies to find ways that build strong relationships with their
customers.

One way of enhancing customer relationships is through cross-selling (Kamakura et al.,
1991). Cross-selling can be defined as selling complimentary products to customers that already
purchased another item before. Some advantages of cross-selling are given by Kamakura (2008),
starting with the idea that it is five times more costly to attract new customers than it is to
serve existing customers. The next advantage is that cross-selling broadens the scope of the
relationship with the customer. Having a broader scope means that from the customer’s point
of view it will be more costly, both monetary and psychological, to switch to different retailers,
which increases the retention rate. In addition, customers buying more different items and
widening the scope of the relationship also means a broader range of information available to
the firm regarding the preferences of their customers. Because of these benefits of cross-selling,
it is important for firms to enhance their cross-selling strategies.

A possible method that strengthens the cross-selling strategy is by using recommender sys-
tems. Recommender systems have become increasingly important over the last years, since
making accurate predictions about what (potential) customers are interested in, proves to be a
very valuable tool.

The systems that compute these recommendations can be divided into two main categories:
the Collaborative Filtering (CF) methods and the Content-Based (CB) filtering methods (Park
et al., 2012). CF methods make use of the information about previous purchases, ratings or
encounters of customers. This information is then compared to a community of customers,
from which the behavior of the similar minded customers is used to predict the affinity for
products that have not yet been sold to the customer of interest (Bobadilla et al., 2013). CF
is considered the most successful approach, but it does have some challenges to conquer. The
first challenge is posed by the increase in the amount of information available to use for making
recommendations. Traditional collaborative filtering methods, of which the k-nearest neighbor
method is the most widespread used, tend to become much slower when the amount of data

increases by large amounts (Sarwar et al., 2001). The second challenge lies with producing high

quality recommendations when data becomes sparse. If there is little information about each
customer, it can become hard for traditional collaborative filtering methods to consistently make
accurate recommendations.

Regarding the second main category, content-based filtering, these methods analyze the
content of products, services or encounters a customer has rated. Based on these ratings,
content-based filtering methods draw up a user profile based on the characteristics of the ratings
and use these profiles to recommend items that are similar to the ones that were positively rated
(Park et al., 2012). One of the major pitfalls with these kind of methods is that they tend to give
overspecialized recommendations including only items that are very similar to the ones already
rated or bought.

The decision as to which method to use for making recommendations is strongly influenced
by the characteristics of the data on which the recommendations are based. CF methods mostly
rely on the similarities in purchase behaviour, where we expect users to behave similarly in
the future if they have shown similar purchase behaviour in the past (Jannach et al., 2010).
CB filtering is mostly based on the characteristics of items and the value that users assign to
each of these characteristics. It is immediately noticeable that there is a difference in the level of
information needed for both methods. Knowing only the purchase history of a set of users can be
enough to compute CF recommendations, whereas CB filtering needs more detailed information
about the characteristics of the items purchased and how each characteristic was valued in order
to compute recommendations.

As obtaining detailed information about preferences of users can prove very challenging for
many retailers, this research focuses on making recommendations when only unary purchase
history is known. These problems can be categorized as One-Class Collaborative Filtering
(OCCF) problems where the data usually consists of unary ratings, depicting a user’s action
or inaction (Pan et al., 2008). The data that is used, originating from an online grocery store,
contains a large number of orders, showing the purchase behaviour of a set of users. The
data set is split into training and testing subsets in order to compare several models in terms
of performance. The models that are being examined are User-Based Collaborative Filtering
(UBCF), Item-Based Collaborative Filtering (IBCF) and Association Rule Mining (ARM). Both
UBCF and IBCF use similarity measures to find a nearest neighbourhood, consisting of similar
users and items (Jannach et al., 2010). Cross-validation is used to find the optimal similarity
measure and the optimal size of the nearest neighbourhood. The final models are then compared
to ARM, which computes recommendations by finding rules that imply co-occurrences between

items. Something similar is done by Jalili et al. (2018), who compare a number of techniques on

several datasets in order to review evaluation metrics to assess recommendation performance.

This paper adds to the literature by discussing the difference in performance between item-
based and user-based recommendations in the case of OCCF problems. Related literature on non
OCCF problems suggests that the performances of recommendation techniques are influenced
by the evaluation metrics used and the characteristics of the data that is used to compute the
recommendations from (Jalili et al., 2018).

The aim of this research is to find the differences in recommendation performance between
UBCF, IBCF and ARM, when having only unary purchase data available. The research question

can thus be defined as:

What is the difference in performance between User-based Collaborative Filtering,
Item-based Collaborative Filtering and Association Rule Mining, when computing

recommendations for One-Class Collaborative Filtering problems?

The main results of this paper indicate that IBCF outperforms both UBCF and ARM in terms
of performance. UBCEF is the least performing method, indicating that item-based similarities
might prove more beneficial when there is little to no explicit feedback from users. However,
the results show no evidence of a performance gain relative to just always recommending the
most popular items when item popularity is highly skewed. This does not seem to be specific
to OCCF, since transforming the unary ratings to real ratings also leads to results that do not
seem to outperform the model always recommending the most popular items.

The remainder of this thesis is structured as follows: the next section will cover related
literature on recommender systems, followed by a detailed description of the data in Section
3. Section 4 describes the methods that are used, along with the resampling technique and
evaluation metrics. Section 5 shows the results after which the conclusion of the paper and the

discussion on further research can be found in Section 6.

2 Literature Review

Ever since the first research paper on collaborative filtering was written in the mid-1990s, rec-
ommender systems have been widely studied (Park et al., 2012). Before diving deeper into the
relevant literature on this subject, we first explain some basic theory on the different forms of
recommender systems. First, we will cover the concept of user feedback and how this is used
in recommender systems. After that, several different models of recommender systems will be
explained. To conclude on this section, there will be a summary of the relevant literature for

this topic.

2.1 Recommender input

Recommender systems are generally used to compute lists of items that might be of interest
to users. These lists are comprised of suggestions that can help users make decisions on which
item to buy. As stated by Ricci et al. (2011), the term ”items” refers to everything that is being
recommended by a recommender system.

The most simple version of a recommender system will offer a ranked list of items, of which
the ranking is based on the preferences and constraints of the user (Ricci et al., 2011). The
information about these preferences and constraints is obtained through feedback given by users
and functions as the input for recommender systems. User feedback can be divided into two
categories, namely explicit and implicit feedback (Jannach et al., 2010). Explicit feedback is a
very detailed way of obtaining information about the experience a user has had with a certain
product. This type of feedback is usually provided by ratings given to or reviews written about
items. Recommender systems based on explicit feedback require explicit input from users, which
is not always widely available, due to the fact that it takes an extra effort for users to provide
it. Implicit feedback on the other hand can be inferred by interpreting the behavior of users and
does not require any explicit input from users (Hu et al., 2008). By monitoring the behavior
of a user, one can deduce certain conclusions about their preferences. If a user tends to visit
a certain page more than other pages, we can assume that this user has an interest in the
items on that page. Users buying products without rating or reviewing these items can also be
considered implicit feedback. In general, explicit feedback is considered to be the more precise
way of collecting information about preferences, but it does have some disadvantages compared
to implicit feedback. As stated before, explicit feedback requires explicit input from users,
which is not always available. Also, ratings and reviews can become biased when only users
with certain emotions regarding the item of interest decide to rate or review that item.

Overall, the information derived from feedback can be divided into three objects: items, users
and transactions (Ricci et al., 2011). Transactions can be regarded as the interactions between
users and items and they contain the important and useful information about these interactions.
The most popular transactions are ratings, which can take on several forms (Schafer et al., 2007).
In general, ratings are categorized as scalar ratings, binary ratings or unary ratings. Scalar
ratings can either be numerical ratings or ordinal ratings and they provide a scale on which
a user can rate items. With binary ratings, users can only choose between two alternatives,
positive or negative. Comparing this to unary ratings, this type of rating only indicates whether
or not there has been an observable interaction between a user and an item.

After collecting user feedback, the behaviour and preferences can be modeled as a user-item

matrix, where users and items are represented as rows and columns, respectively. These matrices
can usually either be a real rating matrix or a binary rating matrix. Real rating matrices have
values from a predefined ordinal range for each user-item combination, whereas binary rating
matrices value each user-item combination with either a 1 or a 0. In the case of binary rating
matrices, binary user feedback leads to a 1 for positive ratings and a 0 for negative ratings.
Unary feedback is depicted as a 1 for having purchased an item or a 0 for not having purchased
an item.

This thesis uses ratings of the unary sort. The data that is used, originates from an online
grocery store and shows the products that were sold for each order. Since there is no information
about interests aside from the distinction between products bought and products not bought,

the rating matrix that is computed from the user feedback will be a binary rating matrix.

2.2 Recommender systems

There are several methods that compute recommendations, of which the most common ones are
Content-Based (CB) filtering and Collaborative Filtering (CF). The main difference between
these two methods is that CB filtering is based on the characteristics of items, whereas CF is
based on similarities between users or items. CF methods can be further divided into memory-
and model-based methods. This section will first cover the CB filtering approach, which will
only be explained in short, since it will not be used in the remaining part of this thesis. It is
merely explained to give a more complete overview of the possible approaches. The memory-

and model-based CF methods will be explained afterwards.

2.2.1 Content-based filtering

When making recommendations, one way is to look at items that were previously used by a
user. If a user used an item that has certain characteristics, chances are that he or she will
also be interested in another item that has the same characteristics. CB filtering is based on
this principle and tries to determine the characterizing features of items. These features can be
anything that distinguishes an item from other items. Examples of these features are the genre
of a movie, the musician of a song or the topic of a news article. When recommending using CB
filtering, the main two pieces of information that are needed are: the characteristics of items
and user profiles containing information about the item characteristics of previously used items
(Jannach et al., 2010). Let’s say we want to recommend a movie to a certain user. We first have
to know what kind of movies this user usually watches. The system should hold a user profile

on this user, containing information about the characteristics of previously watched movies.

If we assume that this user’s profile shows that he or she previously watched comedy movies,
then we can recommend movies that are characterized as such. It can be easily deduced that
this recommender method mainly relies on the ability to describe the characterizing features of
items. We do not necessarily need a much larger user community or a detailed rating history to

compute these recommendations.

2.2.2 Memory-based collaborative filtering

The second method is CF, which is based on the idea that users who shared the same preferences
in the past, will also share the same preferences in the future (Jannach et al., 2010). If user A
has a very similar purchase history compared to user B, then if user A has just bought a product
that is not yet seen by user B, we would recommend that product to user B as well.

As stated before, CF can be separated into two main categories, memory- and model-based
CF (Breese et al., 1998). Memory-based CF uses similarity measures to find similar users within
the full user-item matrix and computes recommendations directly. Model-based CF on the other
hand uses the user-item matrix to train models that learn underlying relationships about the
data. Recommendations are then based on the predictions of the model and not on the entire
user-item matrix. The memory-based models will be explained first.

The most well know memory-based CF methods are the nearest neighbor algorithms (Schafer
et al., 2007). These algorithms use the user-item matrix to find similar users through the use of
statistical similarity measures. The first algorithm that we will discuss is the user-based nearest
neighbor algorithm. This method searches for users that are similar to the user of interest in
their behavior or preferences. These similar users are called neighbors and are used to generate
predictions about the user of interest. To predict the ratings of user A for a list of items, we
use the ratings of the nearest neighbors to compute item scores. This method is based on the
assumptions that users will have similar tastes in the future if they had similar tastes in the
past and that the preferences of users will be consistent over time (Jannach et al., 2010). One
of the challenges for this method lies with data sparsity, which could lead to skewed neighbors
that dominate the neighborhood of a user (Schafer et al., 2007). Another challenge is that the
similarity measures fail to differentiate between similar ratings that are more meaningful than
others. For example, it would be more interesting to know that two users have the same opinion
on a more controversial movie than it is to know they both enjoy a movie that almost everyone
enjoys. The final challenge is that the calculation of neighborhoods can become computationally
less feasible when the amount of users and ratings increases, leading to a scalability problem.

The second algorithm is the item-based nearest neighbor method. This method can be seen

as the transpose of its user-based alternative (Schafer et al., 2007). Item-based nearest neighbor
algorithms base their predictions on the similarities between items, instead of similarities between
users. These similarities are computed by examining ratings for different items to find items that
score similar to the item of interest among the community of users (Sarwar et al., 2001). If we
want to predict the rating of an unseen item, we find the already rated items that show similar
scoring patterns among the total user pool. The predicted rating for the item of interest will be
comparable to the already known ratings of the similar items. One of the benefits of item-based
nearest neighbor algorithms is that the total number of correlations used for prediction can be
pruned to make computation more feasible and to diminish the effect of skewed correlations
dominating predictions (Schafer et al., 2007). However, the downfall of this adjustment is that

it leads to less accurate predictions.

2.2.3 Model-based collaborative filtering

The second CF category consists of model-based algorithms. As just discussed, one of the
problems for memory-based CF lies with the scalability of the algorithms. Model-based CF
tries to tackle this by computing a model that captures the full dataset, but is computationally
more feasible when producing recommendations, because of the recommendations now being
based on the model instead of the full user-item matrix (Jannach et al., 2010). In many of the
model-based CF applications, techniques are used that can be defined as parts of Data Mining
processes (Amatriain et al., 2011). Techniques that are very common in model-based CF are
dimension reduction techniques (Goldberg et al., 2001; Paterek, 2007), association rule mining
(Mobasher et al., 2001; Cho et al., 2002; Lin et al., 2002) and probabilistic classification methods
(Miyahara and Pazzani, 2000; Cho et al., 2002; Salakhutdinov et al., 2007).

Next to scalability, another limitation for memory-based CF is data sparsity (Cho et al.,
2002). Generally, memory-based CF needs explicit non-binary ratings to produce accurate
recommendations. When data is sparse, neighborhoods are harder to compute, leading to less
accurate predictions.

Association rule mining can be seen as a solution to sparse data and also tackles the scalability
problem. It is a technique that searches for rules that predict the occurrence of items, given the
occurrences of other items (Amatriain et al., 2011). Relationships between items are related to
the co-occurrence of these items and not causality of any sort. Association rules can be expressed
as X = Y, with X and Y being sets of items (itemsets). The support of X = Y is defined by
the percentage of the transactions that contain both X and Y, whereas the confidence of that

rule is given by how often Y appears in transactions that contain X. By only depending on the

occurrence of items, association rule mining solves the data sparsity problem.

Overall, with association rule mining the aim is to find all rules that satisfy some user-
specified minimum values for both the support and the confidence (Cho et al., 2002). The first
step in this process is to generate all itemsets that satisfy the minimum support value, also
known as frequent itemset generation. One of the more common methods for frequent itemset
generation is the Apriori algorithm (Agrawal et al., 1994), which is based on the principle that
if an itemset is frequent, then all of its subsets must also be frequent. After finding the frequent
itemsets, high confidence rules are generated, which are used to produce recommendations,
making this method very scalable when the amount of data increases, since it does not rely on

the full user-item matrix anymore.

2.3 Literature summary

The difference in performance between user- and item-based CF has been studied extensively
in previous literature. An example is given by Sarwar et al. (2001), who analyze several item-
based models, each having different similarity measures or recommendation techniques. The
results indicate a performance gain in terms of both computation time and accuracy when
compared to user-based models. In addition, Deshpande and Karypis (2004) present an item-
based approach to collaborative filtering, leading to qualitatively comparable recommendations
that are significantly faster to compute than the user-based approach. Furthermore, Jalili et al.
(2018) compare several collaborative filtering approaches by testing them on multiple datasets.
They use different evaluation metrics and conclude that performance highly depends on the
characteristics of the dataset and which evaluation metric is used.

Most of the previous literature, however, assume a richer set of user feedback available
to compute recommendations from. In the case of real ratings, a lot of studies use datasets
containing ratings on an ordinal scale, whereas the papers with binary ratings assume positive
preferences for ratings of 1 and negative preferences for ratings of 0. In the case of OCCF,
however, the used dataset usually contains less to no information about the negative preferences
of users, as a rating of 0 indicates the absence of preference for that item. Previous literature on
OCCEF problems touches on several subjects, such as handling unlabeled instances or solving the
class imbalance problem (Pan et al., 2008). To our knowledge however, the difference between

user- and item-based nearest neighbour algorithms in the OCCF setting has not yet been covered.

3 Data

This section introduces the data that is used for this research. The Instacart Online Grocery
Shopping dataset provides purchase data from an online grocery store and is publicly available
online (Instacart, 2017). The data is used to investigate the possibilities of increasing cross-selling
opportunities by implementing recommender systems. The dataset contains information about
the content of each basket, the time of placement and how long it has been since the previous
order for a given customer. The product assortment is comparable to an average grocery store

and regarding the customers, there is no information available to set up demographic profiles.

3.1 Data description

The dataset contains information about 3,421,083 orders from 206,209 different customers. Due
to the size of the dataset and regarding the computational feasibility, we use a sample of 10%
from this dataset. The sample is drawn by randomly selecting 20,620 customers, leading to a
total number of 331,451 orders. For each order, we know which products were added to the
basket, where products can be added multiple times to a single basket, leading to the fact that
the number of items will always be equal or greater than the number of different products for
each order. Among these 331,451 orders, a total number of 3,336,718 products were sold. On
average, customers order (3,336,718/331,451 =) 10.07 products per order.

The number of different products is 49,685, which is why this paper does not consider
unique products in computing recommendations. Using unique products when computing the
user-item matrix would lead to an infeasible large matrix, where data would be sparse and
similarities would be hard to compute. Therefore, this thesis uses sub-classes of items, which
can be described as groups of similar products. The sub-classes are based on two different
hypernyms, where each product is categorized by the aisle and department it belongs to. Table
1 gives an overview of the number of different sub-classes per hypernym.

Table 1: Number of sub-classes per hypernym

Department group Aisle group

of sub-classes 21 134

By using sub-classes of products instead of unique products in determining unique items, we
decrease the overall number of different items per order. If two different products belong to the
same sub-class, they will be counted as one item. Looking at the resulting user-item matrix, we

will have a matrix where the rows represent the users and the sub-classes of products will be

10

the columns. If a customer orders an item that belongs to a certain sub-class, there will be a 1
in the matrix for that sub-class and a 0 otherwise.

Regarding the different hypernyms, it is important to decide which sub-classes will be used for
making recommendations. Improving cross-selling may lead to an improvement of the durable
income for a retailer, so making recommendations within the right sub-classes of products is
essential. The different sub-classes within the department groups seem to be quite general, which
is only logical since there are only 21 sub-classes for 49,685 different products. Comparing this
to the aisle group, the sub-classes in this group still need to capture a large amount of products
within 134 sub-classes, but they seem much more precise than their department counterparts.
Using the aisle groups will lead to more precise recommendations than using the department
group, which is why this paper will focus only on the aisle groups.

When looking at the aisle groups, it is obvious that the number of orders remain unchanged.
Furthermore, the number of aisle groups ordered is 134, meaning that all aisle groups are being
ordered. Next to this, it is viable to know how many different aisle groups are being ordered
by individual customers. Figure 1 shows the distribution between customers of the number of

different aisle groups.

Percentage of customers

L

Number of difff;r-&ﬂt disle groups

Figure 1: Percentage of customers vs. number of different aisle groups

It is observable that most customers order products from around 25 different aisle groups and
that only a few order products from more than 75 different aisles. Figure 1 also shows that there

is room for cross-selling opportunities, since buying products from more than 25 aisle groups is

11

already being done by a lot of customers. Figure 2 strengthens this idea by showing that nearly

half of all customers order products from only 1 to 25 different aisle groups.

| Jl

25 50 75 100

Cumulative percentage of customers

Mumber of diffn.;r_ent aisle groups

Figure 2: Cumulative percentage of customers vs. number of different aisle groups

Another thing made clear by looking at Figures 1 and 2 is that most customers will have
more than one aisle group from which they buy products, leading to a dense user-item matrix.
This will make for a relatively easy computation of similarities between customers’ purchase
histories.

Table 2 shows the ten aisle groups that were purchased the most. The third column shows the
size of each aisle group in proportion to the total number of purchases. It shows that the most
popular items make up for a very large portion of the total purchases and that the purchases

are not distributed equally among the different aisle groups.

12

Table 2: Most popular aisle groups

Rank Aisle group Purchase percentage (%)
1 Fresh fruits 11.13
2 Fresh vegetables 10.56
3 Packaged vegetable fruits 5.46
4 Yoghurt 4.50
5 Packaged cheese 3.05
6 Milk 2.75
7 Water seltzer sparkling water 2.65
8 Chips pretzels 2.23
9 Soy lactosefree 1.99
10 Bread 1.78

3.2 Train and test set

In order to test the performance of each model, the data is split into a train set and test set.
Splitting the data is done by taking a random 60/40 split, where the train set consists of 60
percent of the total users, randomly selected from the pool of unique users. The characteristics
of both subsets are shown in Table 3. The train set consists of 12372 users and 1,996,160 total
purchases, leading to an average number of purchases per user of 161.35. The test set contains
8248 users and 1,340,558 total purchases, leading to an average of 162.53 purchases per user.
Table 3 shows that all aisle groups appear in both subsets and that the average number of
purchases per user is nearly the same for both subsets.

Table 3: Characteristics of train and test set

Subset Users Purchases Average purchases per user Aisle groups
Train data 12372 1996160 161.35 134
Test data 8248 1340558 162.53 134

Both the train and test sets are used to compute user-item matrices that model the users’
purchase behaviour. The users are represented in the rows of these matrices, while each column
will depict one of the aisle groups. If a user has purchased a certain item in the train set,
the corresponding user-item combination will be filled with a value of 1. All other user-item
combinations in the matrix will receive the value of 0.

When evaluating the results of this paper, several alternative subsets of the data are sampled

to compare the main results with. The characteristics of these subsets are not discussed here,

13

since they follow a similar pattern as the main dataset. They are also not in the main scope of
this paper, but merely function as comparison.

In addition, in order to test whether our results are OCCF specific, we compute recom-
mendations on a dataset where the unary ratings are transformed to real ratings as well. This
transformed dataset originates from the main dataset of this paper, so it is expected to have
similar characteristics. Therefore, the transformed dataset is not explained in detail here as

well.

4 Methodology

This section describes the different methods that are used to generate recommendations. We
start with the memory-based CF approaches, User-Based CF (UBCF) and Item-Based CF
(IBCF), after which we’ll discuss the model-based approach of Association Rule Mining (ARM).
The memory-based CF approaches use similarity measures to find a user-specified number of
similar users. In order to find the best similarity measure and the optimal number of similar
users, we will use cross-validation (CV). In addition, CV is also used to estimate the optimal
number of items to recommend. The optimal values for these parameters are computed by com-
paring the performance of the corresponding methods, which is measured by several evaluation
metrics.

First, Section 4.1 explains CV and its application in this paper. After this, the memory-
based approaches and different similarity measures are explained in Section 4.2. Subsequently,
the ARM approach is discussed in Section 4.3, after which we conclude with describing the
evaluation metrics in Section 4.4.

Throughout this thesis, we will use the same notation for all methods. Formally, there are
U different users and Z different items, where U = {uy,ug, ..., un} and Z = {iy, i, ...,i,}. The
corresponding ratings are captured in an m X n rating matrix R in the case of UBCF and an

n x m rating matrix R” in the case of IBCF. We define R = (r;;) as

1, if user u; already purchased item iy
Tk = (1)
0, otherwise.

4.1 Resampling methods

Resampling methods are used to solidify the confidence of performance measures. By repeatedly
drawing samples from a data set, we are able to fit and evaluate each model multiple times.

This way, we are able to tune the parameters used in the models and make a more confident

14

estimate of the performances. The resampling method used in this paper is cross-validation
(CV), where each model is evaluated a number of times, after which the results are averaged.
The parameters that are tuned specifically for the memory-based models are the similarity
measures and the number of nearest neighbours. In addition, we also tune the number of items
recommended for all models.

With k-fold CV, the data set is split into k subsets, all being approximately the same size
(Kohavi et al., 1995). Each time, one of the subsets is used as validation set, while the remaining
k - 1 subsets are used to train the model on. After repeating this process k times, the results are
averaged, producing more robust results. The error measure that is used is the mean absolute

error (MAE), which can be defined as

1 N
MAE:N;\Q, (2)

where N is the total number of items available for recommendation and ¢; is the absolute error
for item ¢. This absolute error is computed by taking the difference between the predicted value

of each item and its actual value, which will always be either 0 or 1.

4.2 Nearest neighbour recommendations

The main idea with memory-based collaborative filtering is that similar users have similar pref-
erences (Ning et al., 2015). We expect users who show similar purchase histories to also prefer
the same items in the future. The most common memory-based collaborative filtering approach
is the nearest neighbour approach, which can be divided into user-based nearest neighbours
and item-based nearest neighbours. Both methods use similarity measures to find similar users,
or nearest neighbours. This section will first explain the user-based approach, along with the
different similarity measures that are being considered, after which we will cover the item-based

alternative.

4.2.1 User-based nearest neighbour recommendations

The first memory-based approach considered is the user-based nearest neighbour recommenda-
tion method. In general, this method predicts the rating r;; of user u; for item iy, based on
the ratings of users that are similar to user u; for the same item i; (Ning et al., 2015). These
similar users, also known as nearest neighbours, are the users that show the most similarity in
purchase behaviour.

To find the neighbourhood of similar users, we use similarity measures and select a specified

number of nearest neighbours, also known as the k-nearest-neighbours (kNN) algorithm. Two

15

common similarity measures are the Pearson correlation coefficient and the Cosine similarity,

which are defined by

Pearson(x,y) = cov(x,y) (3)
0xOy
and
. . x-y
Cosinebey) = L iyl @

where x = r, and y = r, describe the purchase behavior of users u, and w, through their
row vectors in R. The covariance between x and y is given by cov(x,y), while oy refers to the
standard deviation of x. The - implies the vector dot product and ||x|| is the Euclidian length
of x.

In addition to the Pearson correlation coefficient and the Cosine similarity, we also consider
the Jaccard index for measuring similarity. When calculating similarities between two users with
(3) or (4), we only use the items that are rated by both users. For binary data however, this
would not lead to a useful measure, since rated items can only have a value of one. This can be
solved by assuming that users dislike the items that they do not buy. This does, however, tend
to lead to significant errors for new users with very few ones in their purchase history vectors.
To deal with this, the Jaccard index only focuses on ones, thereby preventing the problem with

having too many zeroes. This similarity measure is given by

_ X0y

Jaccard(X,)) = ATk

()

where X and) indicate the sets of items that have a value of one for users u, and u, respectively.
The similarity between users is measured by computing the intersection between X and), which
is subsequently divided by the union of both users’ purchase history.

After computing the similarities between users, we define the neighbourhood H C U by
taking the k nearest neighbours. The users within this neighbourhood are then used to predict
the ratings for the active user by taking the weighted average of their ratings. The predicted

ratings are depicted as non-normalized scores through

Sk, UBCF = ijlrlk, (6)
leH

where sj, is the predicted score for item i; by user uj, 7, is the rating for item ¢ by user u;
and wj; is the similarity between users u; and u;, and functions as a weight. After computing
the scores for each item ¢ and user u, we generate a top-NN list, containing the N highest scoring

items for each user.

16

4.2.2 Item-based nearest neighbour recommendations

Contrary to the user-based CF approach, item-based CF does not use similarities between differ-
ent users to predict ratings. Instead, item-based nearest neighbour recommendations originate
from the similarities between items, which are inferred from the ratings matrix R. These sim-
ilarities are computed using the same similarity measures as with UBCF. The only difference
here is that we use a Z x U ratings matrix as input for the similarity matrix.

The predicted IBCF scores are calculated by totaling the similarities with the items that
were already purchased by the user of interest for each item available for recommendation. The

scores are defined by

Sjk IBCF = Z WikTji, (7)

i€l
where rj; is the rating for item 7; by user u; and wj;, is the similarity between items 7; and .
As with UBCF, we limit the size of the neighbourhood by specifying a value beforehand. This
value determines the number of items that are considered to be an item’s nearest neighbours.

All other similarities are discarded and are not used in computing the score. The remaining

similarities are then used to compute a top-NV list, similarly to UBCF.

4.2.3 Nearest neighbour parameter tuning

In order to find the best performing nearest neighbour algorithm parameters, we use CV to see
which combination of similarity measure and number of nearest neighbours results in the best
performance. For both methods, we compare the Pearson correlation coefficient, the Cosine
similarity and the Jaccard measure. Regarding the optimal number of nearest neighbours, we
consider only three levels and compare those. The first level is considered the rule of thumb for
choosing k and is found by taking the square root of the number of users (Hassanat et al., 2014).
The two other values are values that are relatively close to the value from the rule of thumb.
After tuning the similarity measure and the number of nearest neighbours, we compare the
best performing UBCF and IBCF models to the ARM model in terms of performance and

accuracy.

4.3 Association rule mining

Association rule mining (ARM) is a technique that tries to find rule-like relationships between
the occurrences of items (Jannach et al., 2010). Each user’s purchase history is seen as a
transaction, consisting of all items in Z with a value of 1 for that user specifically. More formally,

transaction j can be defined as T; = {iy € Z|rjp—=1} and the full transaction dataset is defined

17

as D ={T1,7T2,..., Tu}, where the number of different users is given by U. The goal with ARM
is to find relationships between different items, that can be used as rules. These rules are often
written as X —), where both X and Y are subsets of Z and X NY = (). The definition of such
a rule would be that whenever the items of subset X occur in a transaction, we also expect the
items of subset) to be in that same transaction.

In order to convert the found rules into a top-N recommendations list, we use two measures
that determine the significance of each rule. We use these measures to focus on the more
important rules and exclude insignificant ones. The first measure is the support of a rule, which
gives an indication of the probability of two itemsets co-occurring in a transaction and is given
by

number of transactions containing X U
support(X — Y) = & Y

(8)

total number of transactions in D
The second measure is the confidence of a rule, which measures the probability of itemset
Y occurring in a transaction, given the fact that itemset X is also in that transaction. The

confidence is given by

number of transactions containing X U Y

confidence(X —)) = 9)

number of transactions containing X

After finding the rules that appear to be significant, we select the set of rules of which the
user of interest has purchased all items from X'. Subsequently, the union of items appearing in
Y of the associated rules is computed, of which the already purchased items are excluded. The
top-N list is created by sorting the resulting union of items by their confidence measure and

selecting the top NV items.

4.4 FEvaluation metrics

In order to evaluate the performance of our recommender systems, we compare the computed
top-N-lists with the actual purchased items in our test set. The scores that are computed using
(6) and (7) are not binary, so after computing the top-N lists, we consider all items that appear
in the list to have a predicted rating of 1. This is done since the actual purchases in the test set
are binary, depending on whether they are purchased or not. After assuming only binary values,
the final UBCF and IBCF models are compared to the ARM model in terms of performance.
The first measure is the MAE, using (2), which measures the predictive accuracy of the models
by computing the differences between the predicted ratings and the actual purchases.

Next to accuracy, another common technique in evaluating recommender systems is through
the use of a confusion matrix, shown in table 4. The values in the confusion matrix correspond

to the four different possible classification outcomes when comparing actual to predicted values.

18

TP corresponds to the items that are recommended in the top-/V lists and purchased in the test
set as well. [P indicates the items that are recommended, but not purchased in the test set.
F'N shows the items that were not in the top-/V lists, but did get purchased in the test set and
TN corresponds to the items that were not recommended and not purchased as well.

Table 4: Confusion matrix

Actual

Positive (1) Negative (0)

Positive (1) | True Positive (I'P) | False Positive (F'P)
Predicted

Negative (0) | False Negative (F'N) | True Negative (T'N)

From Table 4 several different measures can be derived to evaluate the performance of the

recommender systems. The first measure considered is the precision of a model, given by

correctly recommended items TP
total recommended items ~ TP + FP’

precision = (10)

where TP 4+ FP = N. Precision measures the percentage of the total number of recommenda-
tions that is actually purchased as well. Evaluating recommender systems on their precision is
important, because this measure gives an indication of the conversion rate of the recommenda-
tions made. Knowing the effectiveness of a model makes it easier to decide which model to use
in a given situation.

The second measure is the recall of a model, which indicates how many of the actually

purchased items were recommended as well. The recall of a model is given by

correctly recommended items TP
recall = . =) (11)
total useful recommendations TP + FN

where TP + F'N corresponds to the total number of items purchased in the test set.

Both these measures are considered valuable in evaluating recommender systems, but their
conflicting nature poses a challenge as to finding the optimal trade-off value between both. A
popular way of doing that is by using the F-measure (Jalili et al., 2018). This measure is

considered the harmonic mean between precision and recall and is given by

2
F- = . 12
reasure 1/Precision + 1/Recall (12)

In addition to the described measures, another way of comparing different classification
methods is by using the Receiver Operating Characteristic (ROC) (Konstan et al., 1997). The
ROC is shown as a plot with each model’s true positive rate (TPR) and false positive rate (FPR)
on the y-axis and x-axis, respectively. The TPR of a model is its probability of detection and

is equivalent to the model’s recall. The FPR of a model corresponds to the probability of false

19

alarm, which is computed by %. In general, models can be compared by looking at their
areas under the ROC-curve. The method with the largest area is commonly considered the

method that has the best performance.

5 Results

This section will cover the results of the paper. Using CV, the optimal number of nearest
neighbours (kNN) and best performing similarity measure are found for UBCF and IBCF. The
best performing models, together with the ARM model and two benchmark models, are then

compared based on the chosen evaluation metrics when applied to the test data set.

5.1 Nearest neighbour CV results

The results of the CV for the UBCF and IBCF models are shown in Table 5. The two nearest
neighbours methods are used to compute top-10 recommendation lists while using different
similarity measures and values of k. The resulting MAE for each model, computed using (2),
is used to determine the optimal value for k and find the best similarity measure. First off,
Table 5 shows that, for the UBCF models, there is no difference in MAE between the used
similarity measures, suggesting that all similarity measures choose the same neighbourhood of
nearest neighbours. It is also observable from Table 5 that increasing the number of nearest
neighbours does not lead to a lower MAE. This seems counter-intuitive, since increasing the
size of the nearest neighbourhood is expected to result in a lower error rate, due to the model
having more similar users to compute predictions. A possible explanation for this could be
that the predicted ratings are mostly based on a smaller number of nearest neighbours. In that
case, these neighbours have a relatively strong weight in the prediction, whereas the users that
have lower similarities contribute significantly less in the prediction. Adding more users that
only have a little influence does not change the outcome of the total prediction. An alternative
explanation would be that the optimal number of k£ lies far outside the chosen range of values
for k.

Looking at the absolute values of the IBCF models, we notice a slight decrease in MAE when
increasing k = 50 to £ = 111 and a slight increase when increasing further to £k = 200. The
differences between these levels are so small, however, that we can not assume a statistically sig-
nificant difference in performance when increasing the size of the nearest neighbourhood within
this range of k. Regarding the similarity measures, there does seem to be a performance dif-
ference between the similarity measures, where Pearson’s correlation coefficient is outperformed

by the Cosine and Jaccard measure. The two last-mentioned measures show only a very small

20

difference when k£ = 200, but the size of the difference leads to the assumption that there is no

statistically significant difference in performance between both.

Table 5: MAE of UBCF and IBCF models in CV for N = 10

UBCF IBCF

Pearson Cosine Jaccard Pearson Cosine Jaccard

= 50 0.190 0.190 0.190 0.199 0.179 0.179
k=111 0.190 0.190 0.190 0.196 0.178 0.178
k=200 0.190 0.190 0.190 0.198 0.178 0.179

In order to get a better image of the difference in performance between all models, Table 6 com-
pares all models on their precision, recall and a combination of both through the F-measure.
Table 6 shows that, regarding the UBCF models, there is no difference in performance between
the different similarity measures. The only difference observable is so small, that we assume no
significant difference in performance. In addition, increasing the number of nearest neighbours
also does not lead to an increase in any of the performance measures. Looking at the IBCF
models, Pearson’s correlation coefficient is again outperformed by the Cosine and Jaccard mea-
sure for all levels of k. However, comparing the Cosine and Jaccard measure for IBCF in Table

6 implies assuming no statistically significant difference between both.

Table 6: Precision, recall and F-measure of UBCF and IBCF models in CV for N = 10

UBCF IBCF

Pearson Cosine Jaccard Pearson Cosine Jaccard

k =50 Precision 0.500 0.500 0.501 0.440 0.570 0.572
Recall 0.204 0.204 0.204 0.180 0.233 0.234
F-measure 0.290 0.290 0.290 0.255 0.331 0.332

k =111 Precision 0.500 0.500 0.500 0.459 0.578 0.576
Recall 0.204 0.204 0.204 0.187 0.236 0.235
F-measure 0.290 0.290 0.290 0.266 0.335 0.334

k =200 Precision 0.500 0.500 0.500 0.447 0.574 0.572
Recall 0.204 0.204 0.204 0.183 0.234 0.234
F-measure 0.290 0.290 0.290 0.259 0.333 0.332

Based on Tables 5 and 6, the best performing model for each method is chosen. For the UBCF
model, we pick the one with £ = 50 in combination with the Jaccard similarity measure. Since

we cannot assume any statistically significant differences in performance ,the choice is merely

21

based on the fact that UBCF becomes less computationally feasible when increasing the number
of nearest neighbours. The Jaccard measure is chosen, because it is specifically designed for
binary data. Regarding the IBCF model, we choose the combination of £ = 111 and the Cosine
measure. Setting k to a value of 111 corresponds to the rule of thumb, given by Hassanat et al.
(2014), and compared to UBCF, IBCF tends to be a lot faster to compute, so increasing the
size of the nearest neighbourhood has little impact on the computation time. In addition, the
choice between the Cosine and Jaccard measure seems arbitrary, so we simply choose the highest

F-measure for £ = 111 in Table 6.

5.2 Test set results

Table 7 shows the results of the different models when performed on the test data. Each model
computes a top-10 recommendation list, after which the items on these lists are compared to the
actual purchases in the test set. In order to assess the usefulness of each model, two benchmark
methods of making recommendations are displayed as well. The first benchmark method is to
recommend items randomly and the second method is to always recommend the most popular
items. Recommending items randomly is generally not considered to be a great idea, which is
also shown in Table 7. It has the highest MAE and lowest precision, recall and F-measure, which
comes at no surprise. Always recommending the most popular items, on the other hand, does
seem to yield relatively accurate recommendations. The values of the performance measures for
this method are second to best, indicating that a large portion of the users does tend to purchase
at least some number of items from the 10 most popular items list.

Regarding the nearest neighbour methods, it is observable in Table 7 that the IBCF model
outperforms the UBCF model. The results show that the IBCF model has the highest precision,
recall and F-measure, and the lowest MAE, thereby outperforming all other models. The UBCF
model on the other hand, shows results that are only slightly better than those of recommending
items randomly. It is surprising to see our UBCF model performing relatively poorly, as literature
suggests that user-based recommendations tend to outperform most model-based approaches in
terms of accuracy. A possible explanation could be that users’ preferences in terms of grocery
shopping are hard to predict when based on similar purchase behaviour, due to the lack of strong
patterns in behaviour. This idea is strengthened when assessing the user-based similarity matrix,
where most similarities between users are relatively low. This indicates that most users follow
a rather unique purchase pattern, making it hard to predict their future purchases purely based
on purchase history. Comparing this to the IBCF results, it seems that similarities between

items are a better way of predicting future purchases.

22

Finally, the results of the ARM model are in between the UBCF and IBCF model. This
model seems to outperform the UBCF model, but performs worse than the IBCF model. The
performance of ARM relative to UBCF strengthens the idea that relationships between items are
more suitable for making recommendations than the relationships between users. In addition,
the performance difference between ARM and IBCF shows that there is no real performance
gain in finding association rules over item to item similarities, while ARM does take significantly

longer to compute.

Table 7: Results on test data for UBCF, IBCF, ARM and benchmark models with N = 10

Model Similarity measure kNN MAE Precision Recall F-measure
Random items 0.240 0.188 0.076 0.108
Popular items 0.179 0.578 0.234 0.333
User-based CF Jaccard 50 0.208 0.396 0.160 0.228
Item-based CF Cosine 111 0.179 0.580 0.235 0.334
Association rules 0.186 0.537 0.217 0.309

Until now, we examined the performance of the different models when N = 10. Figure 3
shows the ROC-curve of all models for N = (1, 3, 5, 10, 15, 20), highlighting the difference
in performance between UBCF, IBCF and ARM. It is observable that when N = (1, 3, 5),
UBCEF performs only slightly better than the benchmark model recommending items randomly.
After the N = 5 mark, the UBCF performance increases, but it never reaches the level of
IBCF. In comparison, looking at IBCF and ARM, the strongest performance increase is when
N increases from 1 to 3 and from 3 to 5. Increasing N any further does not seem to lead to
better recommendations. Figure 3 also shows that our popular items benchmark model performs
almost identical to the IBCF model. This does not, however, indicate that we are better off
always just recommending the most popular items. It is very probable that over a given time
period, almost every user will purchase one or more of the most popular items, regardless of
whether these items are recommended or not. This is also reflected in Table 2, which shows the
most popular items and their purchase percentage. Taking the top 10 most popular items leads
to a total purchase percentage of 46.08%, indicating that almost half of all purchases belong
to the most popular items. The results for always recommending the most popular items are
therefore no surprise. In addition, one of the major downfalls of recommending only popular
items is that this does not stimulate cross-selling.

As stated above, there is a strong skewness in the number of purchases per aisle group,

which is a probable cause of the relatively strong performance of always recommending the ten

23

05

—5— Random items

w, = Popularitems
User-based CF

—*— ltem-based CF

/ Association rules

N\

0.3

TPR
0.2
|
[J
=

/ 15
_ & O»—"'!j
175~
2 | o
[
I I I I I
0.00 0.05 010 015 0.20

FPR

Figure 3: ROC-curve of UBCF, IBCF, ARM and benchmark models for different values of N

most popular items. Table 8 shows the results on the test set when combining UBCF, IBCF
and AR with item popularity. Notice that the performance becomes almost identical for all
models, indicating that these popular items have a strong influence on the recommendations.
For the UBCF and AR model, adding item popularity leads to an increase in performance, but
not beyond the model that just recommends the most popular items. Adding item popularity
does not seem to have an impact on the IBCF model, which shows the same performance metric

values as without.

Table 8: Results on test data when adding item popularity, with N = 10

Model Similarity measure kNN MAE Precision Recall F-measure
Popular items 0.179 0.578 0.234 0.333
UBCF-popular Jaccard 50 0.178 0.575 0.235 0.334
IBCF-popular Cosine 111 0.177 0.580 0.237 0.336
AR-popular 0.177 0.578 0.236 0.336

Another way to gauge the impact of item popularity is by computing recommendations on a
subset of the data that excludes the most popular items. Table 9 shows the results of the different
models when performed on a subset of the test data, excluding the top 50 percent of all aisle

groups, based on popularity. The first thing to notice is that, in general, excluding these most

24

popular items leads to a significant decrease in performance. Especially the UBCF method seems
to suffer, now becoming less effective than just recommending random items. Furthermore, the
precision of each model experiences a substantive decrease, while the values for recall seem to
increase. This increase, however, can be expected when the total number of items available
for recommendation is decreased. Comparing Tables 7 and 9, based on the F-measure, almost
all models suffer a decrease in performance, with the random items model being the exception.
However, Table 9 does indicate that the popular items model suffers relatively more than the
IBCF and AR models. Both now seem to outperform the benchmark model, affirming the

thought that the skewness in the aisle groups affects the recommendation performance.

Table 9: Results on subset when excluding most popular items, with N = 10

Model Similarity measure kNN MAE Precision Recall F-measure
Random items 0.228 0.075 0.186 0.107
Popular items 0.207 0.134 0.331 0.190
User-based CF Jaccard 50 0.240 0.043 0.107 0.062
Item-based CF Cosine 111 0.195 0.166 0.412 0.237
Association rules 0.204 0.141 0.348 0.200

5.3 Alternative subset results

In order to see if our results are specific for this dataset only, we also compute recommendations
on subsets of the total dataset. By taking subsets, we aim to find data that is less skewed by
item popularity. The subsets are sampled from the original dataset, based on when the orders
were placed. Table 10 gives an overview of the recommendation results for each of the different

subsets.

25

Table 10: Results on alternative subsets, with N = 10

Subset Model MAE Precision Recall F-measure

Weekend User-based CF 0.153 0.320 0.198 0.245
Item-based CF 0.132 0.457 0.283 0.349
Association rules 0.139 0.415 0.256 0.317
Morning User-based CF 0.152 0.308 0.195 0.239
Item-based CF 0.132 0.441 0.279 0.342
Association rules 0.138 0.400 0.253 0.310
Afternoon User-based CF 0.159 0.380 0.210 0.271
Item-based CF 0.142 0.185 0.269 0.346
Association rules 0.149 0.442 0.245 0.315
Evening User-based CF 0.139 0.242 0.190 0.213
Item-based CF 0.116 0.390 0.306 0.343
Association rules 0.121 0.355 0.278 0.312
Night User-based CF 0.097 0.235 0.337 0.277
Item-based CF 0.098 0.233 0.335 0.274
Association rules 0.102 0.208 0.299 0.245

It is clear from Table 10 that the results are very similar for most of the subsets. Except for the
orders placed at night, each subset shows that IBCF outperforms UBCF and AR, where UBCF
performs worse than AR. Looking at the F-measure, IBCF and AR seem to perform similarly
for each subset, while the performance of UBCF fluctuates between the subsets. Regarding the
orders placed at night, IBCF and AR seem to perform significantly worse than with the other
subsets, while UBCF shows the best performance when compared to the other subsets. Looking
at Table 11, it is no surprise that the recommender systems based on the subsets show similar
performances. Table 11 shows clearly that all subsets follow an almost identical distribution of
the most popular items, only differing in size. This is unfortunate, since it does not tell a lot
about the level of influence of the skewed item popularity. The only thing that can be said is that
it seems like IBCF and AR suffer more from datasets that have significantly fewer datapoints

than UBCEF.

26

Table 11: Distribution of the ten most popular items for each subset

Weekend Morning Afternoon Evening Night
Rank n % n % n % n % n %
1 135,747 11.6 112,923 11.4 172,840 11.1 49,391 11.3 1,066 11.6

2 131,644 11.3 101,866 10.3 167,134 10.7 46,721 10.7 1,009 11.0
3 67,368 5.8 53,681 54 85,279 55 24,451 5.6 504 5.5
4 52479 45 45401 46 65,587 4.2 19433 4.5 415 4.5
5 35482 3.0 29,232 3.0 47,757 3.1 12802 29 265 2.9
6 31,423 2.7 28227 29 41,080 2.6 11,804 2.7 234 26
7 28,806 2.5 26,734 2.7 39,826 26 10,684 2.5 215 2.3
8 23,964 2.1 21,787 2.2 34,983 2.2 8,706 2.0 204 2.2
9 22920 20 19,697 20 29,662 1.9 8,672 2.0 182 2.0
10 21,633 1.8 17972 1.8 28,610 1.8 8,165 1.9 176 1.9

Total 551,266 47.2 457,520 46.2 712,758 45.7 200,829 46.1 4,270 46.5

5.4 Transformed rating results

The results thus far show no evidence of a performance gain relative to always recommending the
most popular items. To see whether this is specific to OCCF datasets only, recommendations
are also computed on a dataset where the unary ratings are transformed to real ratings. This
transformation is done by constructing the user-item matrix in a way that tries to capture the
relative item preference through the quantity of the purchases. Each user-item combination in
the matrix shows the number of times an item was purchased by a specific user, after which
these values are normalized to a scale between 1 and 5. By transforming the unary ratings to
real ratings, we are able to change the recommendation setting where we are no longer dealing
with OCCEF'. Table 12 compares the results of computing a top-10 list on these real ratings when
using UBCF, IBCF and the benchmark models. The similarity measures and values of kNN are
derived through CV and the association rules model is not included, as this model is not suited

for real ratings since it only uses the occurrences of items instead of ratings.

27

Table 12: Results on transformed ratings dataset, with N = 10

Model Similarity measure kNN MAE Precision Recall F-measure
Random items 0.238 0.192 0.078 0.111
Popular items 0.189 0.507 0.207 0.294
User-based CF Cosine 282 0.216 0.330 0.134 0.191
Item-based CF Pearson 142 0.204 0.398 0.138 0.205

In general, Table 12 shows that all models perform worse than before transforming the ratings,
as depicted in Table 7, indicating that adding the relative preferences of users between items
does not always necessarily lead to an increase in recommendation performance. Furthermore,
again the best performing model in this setting is the model recommending the most popular
items overall, suggesting that our previous results are not OCCF specific. The difference between
UBCEF and IBCF, however, does seem to be smaller in this setting than before transforming the
ratings. A possible explanation of this could be that UBCF is more effective at using relative

item preferences of users.

6 Conclusion

The main goal of this paper was to evaluate the difference in performance between user-based
and item-based recommendations when applied to One Class Collaborative Filtering problems.
A dataset from an online grocery shopping market was used to find an answer to the following

main research question:

What is the difference in performance between User-based Collaborative Filtering,
Item-based Collaborative Filtering and Association Rule Mining, when computing

recommendations for One-Class Collaborative Filtering problems?

To answer this research question, several methods were used to compute top-N lists, recom-
mending items based on previous purchase behaviour. The included methods were User-based
Collaborative Filtering, Item-based Collaborative Filtering and Association Rules, of which the
performances were also compared to those of two benchmark models, the random items and the
popular items models. The initial results showed that IBCF and AR outperformed the UBCF
model, where IBCF had the best performance. The popular items benchmark model, however,
outperformed all other models. A possible explanation could be found in the distribution of the
item popularity, which was highly skewed. This effect was tested by computing recommenda-

tions through hybrid models, that included item popularity, and by computing recommendations

28

on a subset excluding the most popular items. The hybrid models all showed similar perfor-
mance to the popular items benchmark model and the results on the subset excluding the most
popular items showed a relatively smaller decrease in performance for IBCF and AR than for
UBCF and the popular items benchmark model, implying an effect of the distribution of item
popularity on recommendation performance. To test this further, several alternative subsets
were taken from the original dataset, based on the day and time of the day orders were placed.
However, these alternative subsets all showed similar item popularity distributions, therefore not
really contributing to testing the effect of item popularity distribution. Finally, in order to test
whether these results are OCCF specific, recommendations were computed on a dataset where
the unary ratings were transformed to real ratings by using the quantity of the purchases. The
results on the real ratings dataset showed no statistically significant difference in performance
between UBCF and IBCF, but the popular items model outperformed all other models in the
non OCCF setting as well.

Answering the main research question can thus be done by summarizing the above. Based on
the dataset used, item-based recommendations seem to yield better performance than user-based
recommendations, where AR is outperformed by IBCF. This conclusion, however, is subject to
the influence of skewed item popularity.

In order to increase the confidence of performance differences between user- and item-based
recommender systems, further research should be done on how to deal with skewed item pop-
ularity. In addition, the performance differences between user- and item-based recommender
systems should ideally also be investigated in OCCF settings that are less influenced by item

popularity.

29

References

Agrawal, R., Srikant, R., et al. (1994). Fast algorithms for mining association rules. In Proc.
20th Int. Conf. Very Large Data Bases, VLDB, volume 1215, pages 487-499.

Amatriain, X., Jaimes, A., Oliver, N.; and Pujol, J. M. (2011). Data mining methods for

recommender systems. In Recommender Systems Handbook, pages 39-71. Springer.

Bobadilla, J., Ortega, F., Hernando, A., and Gutiérrez, A. (2013). Recommender systems survey.
Knowledge-Based Systems, 46:109 — 132.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predictive algorithms
for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in

Artificial Intelligence.

Cho, Y. H., Kim, J. K., and Kim, S. H. (2002). A personalized recommender system based on
web usage mining and decision tree induction. Expert Systems with Applications, 23(3):329—

342.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143-177.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2):133-151.

Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A., and Alhasanat, A. A. (2014). Solving
the problem of the k parameter in the knn classifier using an ensemble learning approach.

International Journal of Computer Science and Information Security, 12(8).

Hu, Y., Koren, Y., and Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets.
In 2008 FEighth IEEE International Conference on Data Mining, pages 263-272.

Instacart (2017). The instacart online grocery shopping dataset 2017. https://www.instacart.

com/datasets/grocery-shopping-2017. Accessed: 2020-11-10.

Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., and Salehi, M. (2018). Evaluating collaborative
filtering recommender algorithms: A survey. IEEE Access, 6:74003-74024.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2010). Recommender systems: An

introduction. Cambridge University Press.

30

https://www.instacart.com/datasets/grocery-shopping-2017
https://www.instacart.com/datasets/grocery-shopping-2017

Kamakura, W. A. (2008). Cross-selling: Offering the right product to the right customer at the
right time. Journal of Relationship Marketing, 6(3-4):41-58.

Kamakura, W. A., Ramaswami, S. N., and Srivastava, R. K. (1991). Applying latent trait
analysis in the evaluation of prospects for cross-selling of financial services. International

Journal of Research in Marketing, 8(4):329-349.

Kohavi, R. et al. (1995). A study of cross-validation and bootstrap for accuracy estimation and

model selection. In [jcai, volume 14, pages 1137-1145. Montreal, Canada.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., and Riedl, J. (1997).
Grouplens: Applying collaborative filtering to usenet news. Communications of the ACM,

40(3):77-87.

Lin, W., Alvarez, S. A., and Ruiz, C. (2002). Efficient adaptive-support association rule mining

for recommender systems. Data Mining and Knowledge Discovery, 6(1):83-105.

Miyahara, K. and Pazzani, M. J. (2000). Collaborative filtering with the simple bayesian clas-
sifier. In Pacific Rim International Conference on Artificial Intelligence, pages 679-6809.
Springer.

Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2001). Effective personalization based
on association rule discovery from web usage data. In Proceedings of the 3rd International

Workshop on Web Information and Data Management, pages 9-15.

Ning, X., Desrosiers, C., and Karypis, G. (2015). A comprehensive survey of neighborhood-based

recommendation methods. Recommender Systems Handbook, pages 37-76.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M., and Yang, Q. (2008). One-class
collaborative filtering. In 2008 Fighth IEEE International Conference on Data Mining, pages
502-511. IEEE.

Park, D. H., Kim, H. K., Choi, I. Y., and Kim, J. K. (2012). A literature review and classification

of recommender systems research. Ezpert Systems with Applications, 39(11):10059 — 10072.

Paterek, A. (2007). Improving regularized singular value decomposition for collaborative filter-

ing. In Proceedings of KDD Cup and Workshop, volume 2007, pages 5-8.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems handbook.
In Recommender Systems Handbook, pages 1-35. Springer.

31

Salakhutdinov, R., Mnih, A., and Hinton, G. (2007). Restricted boltzmann machines for collab-
orative filtering. In Proceedings of the 24th International Conference on Machine Learning,

pages 791-798.

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on World

Wide Web, page 285-295, New York, NY, USA. Association for Computing Machinery.

Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S. (2007). Collaborative Filtering Recom-
mender Systems, pages 291-324. Springer Berlin Heidelberg, Berlin, Heidelberg.

Zhou, L., Dai, L., and Zhang, D. (2007). Online shopping acceptance model-a critical survey of

consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1).

32

	Introduction
	Literature Review
	Recommender input
	Recommender systems
	Content-based filtering
	Memory-based collaborative filtering
	Model-based collaborative filtering

	Literature summary

	Data
	Data description
	Train and test set

	Methodology
	Resampling methods
	Nearest neighbour recommendations
	User-based nearest neighbour recommendations
	Item-based nearest neighbour recommendations
	Nearest neighbour parameter tuning

	Association rule mining
	Evaluation metrics

	Results
	Nearest neighbour CV results
	Test set results
	Alternative subset results
	Transformed rating results

	Conclusion
	References

