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ABSTRACT

Real-time bidding (RTB) is among the most influential state-of-the art marketing technologies.
By allowing ad space to be auctioned in real-time, the market for online advertisements has
significantly shifted, which opened a range of new research possibilities. In this paper, the price
of ad impressions has been modelled using five different methods. By using real RTB data, a
model comparison study was performed that aimed to discover which techniques were able to
most accurately predict the price of ad space. Conclusevely, the results have indicated that
accuracy was moderate across all models with no clear winners. Limiting factors could be
attributed to data quality and model set-up. In the last section, recommendations were made on
how performance could be improved upon in future research.

Keywords: Real-Time Bidding, Demand-Side Platform, Digital Advertising,

Quantitative Marketing, Bid Landscape Forecasting
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1. INTRODUCTION
Upon browsing the web, it is hardly impossible not to be exposed to the overwhelming amount
of digital advertisements that are present. Not only do these ads keep increasing in volume, its
contents are getting more and more tailored as well. This is caused by the rapid evolution within
digital advertising, which industry has grown strongly over the past few decades. Where
previously online ads were sold over the phone to negotiate terms, nowadays most deals are

settled in the time it takes to load a webpage.

After the first digital advertisement launched in 1994, the demand for online ad space has
constantly risen. In 2019, digital ad spending in the US surpassed the marketing budget spent
on traditional media and this difference is expected to continue to grow in the future
(eMarketer, 2019). The increasing demand for online advertising inventory lies in parallel with
the rise of global internet, which created a more complex environment for digital advertising.
It triggered the need for more sophisticated technologies to help automate and streamline the
process of online ad buying, which resulted in the emergence of programmatic advertising.
This marketing technology allows to automatically buy digital ad space by predefining a set of
parameters. Currently, businesses can use programmatic advertising to launch a targeted online

ad campaign by entering a few input fields.

The infrastructure that enables the automated buying and selling of display opportunity is
called real-time bidding (RTB) (Wang, Zhang & Yuan, 2017). RTB is a digital auction process
that allows ad impressions to be put up for bid in real-time on the ad exchange (ADX). There
are generally two types of platforms connected to the ADX, which are the supply-side platform
(SSP) and the demand-side platform (DSP). Publishers trying to sell digital ad space are
organized under a SSP that registers their ad inventory and accepts winning bids. The DSP
represents the advertisers and helps manage their online ad campaigns by systematically
bidding on the offered ad space on the ADX.

RTB is related to various scientific fields including finance, artificial intelligence, machine
learning and marketing. From the perspective of advertisers, buying ad space is an investment
of acquiring new customers with similar risks involved as to trading on the financial markets
(Zhang et al., 2017). Furthermore, elements from artificial intelligence and machine learning
can be used to optimize bidding strategies and minimize cost per conversion as illustrated by

Ren et al. (2018). To marketers, RTB has reshaped the landscape of digital advertising by
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enabling to trade impressions on a per-case basis. This enhances transparency and efficiency
of online campaigns by allowing for personalized advertising, which is positively related to the
effectiveness of an ad (Tucker, 2014). Moreover, it presents a new trade-off for both advertisers
and publishers who must now decide between reservation contracts and RTB for the buying
and selling of ad space. This has several implications on the strategy and profitability of both

parties as was analysed by Sayedi (2018) using a game-theoretic model.

Unfortunately, a lot about RTB remains unknown due to its rapidly changing environment and
a lack of usable datasets (Zhang, Yuan, Wang & Shen, 2014). With RTB becoming
increasingly present in society it is imperative to obtain an adequate understanding of the
technology and its implications. Transparency is needed regarding a variety of topics such as
pricing, viewability, fraud and more. In this paper, focus will be dedicated to investigating
various statistical models’ ability in predicting the price that is paid for impressions in the RTB
market. This could provide a framework to publishers for forecasting their ad revenue and help
understand customer value from an advertising perspective. Moreover, it might interest
advertisers that aim to further optimize their bidding algorithms or assist economists that

pursue to capture the characteristics of this newly opened market.

By using the data of a major Chinese DSP, multiple statistical and machine learning models
have been compared on their accuracy in predicting the price of ad space on the RTB market.
The techniques that are used include different linear regressions, a nearest neighbor model and
an artificial neural network. Since market heterogeneity may affect model performance, a
mixture of regressions has been performed to assess the contribution of market segments in
modelling ad prices. Altogether, the research aims to answer the following research question:
How to most accurately predict the price of an impression in the real-time bidding market for

display advertisements?

This paper comprises the following structure. In the next section, the methodology of this
research will be extensively covered. This includes a summary of the RTB environment, a
general description of the data, and an explanation of the statistical techniques and selection
criteria that are used. Subsequently, the results of the statistical models are presented and
evaluated. Lastly, the final section lists the concluding remarks, discusses the limitations and

provides recommendations for future research.



2. METHODOLOGY

2.1. Real-Time Bidding Ecosystem

The first platforms focusing on the RTB-based trading of ad impressions emerged over a
decade ago and are currently known as ad exchanges (Wang, Zhang & Yuan, 2017). Contrary
to a traditional ad network (ADN), these ADXs introduced real-time auctions to balance and
centralize the demand and supply in the digital advertising market. This fundamentally changed
the landscape of online advertising in multiple areas. Their entrance signified the shift from
contextual advertising to behavioral targeting in display advertising and presented a range of
new benefits to advertisers and publishers. Furthermore, RTB significantly scaled up the
transaction volume in display advertising which is now likely to exceed the daily number of
shares that are traded on the financial market (Wang, Zhang & Yuan 2017).

To capture the RTB system, it is useful to first zoom in on a simplified path of an individual
impression as described by Wang, Zhang and Yuan (2017). For every user that visits a
webpage, an impression is generated at a web publisher. In the time it takes the page to load,
an ad request gets sent to an ADX that queries the bids from different advertisers. The
advertiser with the highest bid is selected and notified after which its ad gets displayed to the
specific user. Lastly, the advertiser can track user feedback such as whether the person clicked
or converged following from the ad. Altogether, this entire process — from the impression being
fetched to the advertisement being shown — takes approximately 100 milliseconds (Wang,
Zhang and Yuan, 2017).

There are multiple entities that play an important role in the RTB process. In general, there are
two main platforms connected to the ad exchange which are the supply-side platform and the
demand-side platform (Yuan, Abidin, Sloan & Wang, 2012). A SSP represents the publishers
by automatically registering ad space, accepting bids and placing ads. It aggregates the
impressions of multiple publishers and ADNs, which are then put up for bid on the ADX. A
DSP serves the advertisers in their digital ad campaigns by automatically bidding for
impressions on multiple ADXs. The platform relies on sophisticated algorithms for doing so
that provide a competitive return to clients. This return is often measured using the expected

value of conversions and clicks that follow from an ad campaign (Wang, Zhang & Yuan 2017).



To train the algorithm, it requires user data. Some of this is automatically provided by the
publisher at the time the impression gets created. However, since comprehensive user data is
in such high demand, data exchanges (DX) emerged to seize the profit opportunity. A DX
collects historical user data using advanced information technology, which it sells to companies
in the digital advertising market. A graphical overview that summarizes the RTB environment

is provided in Figure 1 (Yuan et al., 2012).

To successfully trade ad impressions, the auction set-up adopts a couple distinct features. An
important characteristic of a RTB auction is that it is commonly structured as a Vickrey or
second-price auction (Wang, Zhang & Yuan 2017). The bids are submitted in sealed form and
the winner of the auction pays the price of the second highest bidder. This ensures that
participants submit bids that are equal to their own valuation as demonstrated by Milgrom
(2004). Furthermore, most ad impressions that are being auctioned contain a floor price. This
is the minimal price for which a publisher would allow an impression to be sold as is
communicated to the participants. Impressions failing to deliver that value on the auction are

often bundled and sold using reservation contracts.

Figure 1
Overview of RTB Market
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2.2. Data

The dataset used in this research is based on RTB data released by the Chinese DSP iPinYou
(Liao, Peng, Liu & Shen, 2014). As one of the largest DSPs in the county, iPinYou provides
businesses with big data and Al solutions in the context of digital marketing. In 2013, the
company organized a global RTB algorithm contest to help improve its DSP bidding algorithm
and stimulate scientific growth in the RTB environment (Liao et al., 2014). After the

competition ended, the datasets were made public for further research.

In total, the iPinYou dataset consists of close to twenty million impressions and the bids of
twelve advertisers over the course of three different time periods or seasons. It is structured in
four different logs of biddings, impressions, clicks and final conversions that each contain
information regarding the user, the ad slot and the bidding information. An overview of the log
data format has been provided in Table B1. However, for a more thorough description of the
data it is recommended to consult the iPinYou competition supplement by Liao et al. (2014)
and the research of Zhang et al. (2014).

This paper selected the impression log of the data for its analysis since it contains all the
advertisements that have been broadcasted to a web visitor. Here, the objective was to predict
the paying price of an impression since it resembles the general valuation of the ad space. The
price unit was denoted in RMB per CPM as is a common metric in display advertising (Wang,
Zhang & Yuan, 2017). The variables that were used for modelling this price include: the
timestamp, user agent, region, ad exchange, ad slot width, ad slot height, ad slot visibility and

the ad slot floor price.

For the analysis, a sub-sample of the data was used for faster calculations with limited
information loss. The third season has been selected for sampling since it contains the most
recent data and comprises the longest consecutive time span. From this data, 10,000
impressions have been randomly sampled for conducting the statistical analyses and model
evaluation. To further prepare the data, multiple preparation steps were performed. This
included removing missing values, converting the timestamp, recoding user agent information,

and merging the ad slot width and height to common resolutions.



2.3. Supervised Learning

Forecasting the paying price in auctions is categorized as a supervised learning problem. In
this area of machine learning, a set of independent variables is used to predict one or more
dependent variables. Since price is a quantitative variable, a regression technique can be used
to estimate the statistical relation. This research compares various supervised learning

techniques for modelling paying price, which is elaborated on in the remainder of this section.

2.3.1. Linear Regression

A standard approach for modelling conventional auctions is by estimating the linear
relationship between the variables. Linear models have a long history in statistics and are still
widely used as of today (James, Witten, Hastie & Tibshirani, 2013). There are a great number
of extensions and generalizations of the linear model all varying in terms of complexity and
applicability. In this paper, a general linear regression will be set up that serves as a benchmark

model to its extensions and machine learning techniques.

Let us start by considering a linear regression model that uses one predictor variable X for
predicting the response variable Y linearly as formalized by James et al. (2013). This model
can be written in the following functional form Y = g, + ;X where 8, and f3; are the model
coefficients or parameters. These coefficients capture the linear relationship between the
variables in the population with 3, as intercept and S, as slope. Since this population is unlikely
to be fully observable its parameters are usually unknown. By taking a sample with n
observations of x and y, and i being equal to 1, ..., n, the future value of y can be estimated as
9 = B, + B1x. The hat symbol, *, is used to denote the estimated value of a parameter or the

predicted value of the response variable.

In the real-world, the predicted value y often differs from the observed value y resulting in a
residual or error. Mathematically, for every ith observation the error e is given by e; = y; —
9, which let us write y = 8, + f;x + e. The errors play a fundamental role in the linear model
as they are used for estimating the model coefficients by optimizing a cost-function such as the
least squared criterion. This is a method of finding coefficients subject to minimizing the
residual sum of squares (RSS) defined as RSS = Y™, e?. Conceptually, it attempts to fita line

to the data as to minimize its distance to all of the observed values.
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The simple regression can easily be extended to a multiple regression model, which is
expressed as Y = By + B1X; + B X, + -+ + B X, + € with p predictor variables. Here, the
population error ¢ is introduced to acknowledge that most real-life relationships are not
perfectly linear. The coefficients of this model are estimated in a similar procedure as for the
simple regression by minimizing the RSS. However, instead of fitting a line it aims to fit a

multidimensional hyperplane to the data making it harder to visualize.

2.3.2. Box-Cox Transformation

The standard linear model relies on various statistical assumptions to reasonably depict real-
world relations and provide meaningful results (James et al., 2013). In general, these include
adhering to a linear response-predictor relationship, a constant variance of the errors and no
correlation among the errors. When these assumptions are not met, potential problems may
arise that can lead to illegitimate claims (James et al., 2013). Identifying and overcoming these

problems has been extensively researched and there are countless ways of doing so.

A popular approach for addressing violations of the model assumptions is to perform a Box-
Cox transformation on the dependent variable as was introduced by Box and Cox in 1964. By
transforming y, its distribution will be adjusted to better meet statistical properties of the linear
model. The Box-Cox transformation specifically aims to reduce non-normality of the errors,
but it can also help to combat heteroscedasticity and non-linearity (Box & Cox, 1964).
Mathematically, the Box-Cox transformation of y — given that the variable is strictly positive

— using the power parameter A can be expressed as
2

y(z) _ n if L#0;
log(y) if A=0.

What distinguishes the Box-Cox transformation from other power transformation techniques
is that it uses a maximum-likelihood estimation for finding the optimal value for A. In statistics,
likelihood refers to the goodness of fit of a certain distribution in belonging to the observed
data (Friedman, Hastie & Tibshirani, 2001). This value is expressed by the likelihood function
which consists of unknown model parameters and a given sample. Likelihood estimation aims
to find the model parameters by maximizing the likelihood function under some assumed type
of distribution with respect to the observed data. This yields the distribution under which a

given sample is most probable. For the Box-Cox transformation, the maximized log-likelihood
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function for a fixed A is expressed as L,,qr (1) = — %nlog G2+ @A —-1)Y", logy;. By

plotting the maximized log-likelihood L,,,, (1) against A for a trial series of values, the optimal

A can be found.

2.3.3. Finite Mixture of Regressions

This research uses a mixture model to control for market heterogeneity and uncover the market
segmentation for online display advertisements. Finite mixture models use a probabilistic
approach to detect the presence of sub-populations within a population without the need of
observing them a priori (McLachlan & Basford, 1988). This model class outperforms the
commonly used heuristic-based methods that are used in market segmentation since these are
likely to contain insufficient statistical basis to uncover the true cluster nature (Tuma & Decker,
2013).

In the context of clustering, mixture models assume that a set of observations can be generated
by a mixture of models that each represent a different sub-population or cluster (McLachlan &
Basford, 1988). Hence, each cluster is characterized by a certain model in contrast to the
similarity among observations that is used in traditional statistical clustering techniques. A
mixture model relies on maximum likelihood to fit a set of models to the data and find the

underlying group structure (McLachlan & Basford, 1988).

This approach allows to obtain a probabilistic clustering of the observations by deriving the
estimated posterior probabilities of group memberships. Hence, each observation can be related
to multiple sub-groups in the data with a different probability. Allowing for uncertainty of
belonging to a cluster expressed by a membership function is commonly referred to as fuzzy
or soft clustering (Yang, 1993). By subsequently assigning each entity to the cluster it has the

highest probability of belonging to, a non-fuzzy or hard clustering solution can be obtained.

The most common implementation of a mixture model involves fitting a mixture of Gaussian
distributions to a multi-modal dataset (McLachlan & Basford, 1988). This will improve density
estimation and help discover sub-populations in the data. However, when applied in a market
segmentation analysis its solution will be mostly descriptive (Wedel & Kamakura, 2001). The
resulting segments will consist of observations that are largely homogenous in their attributes

such as product features or geographical information.

12



A different approach to the regular mixture model that is often used in market segmentation is
to fit a mixture of regressions to the data (DeSarbo & Cron, 1988). Here, clusters are formed
based on the inferred relationship between the dependent variable and a set of independent
variables within each group (Wedel & Kamakura, 2001). This yields segments with a varying
responsiveness of the dependent variable to different sub-groups of the independent variables.
In addition, the method provides fitted regression models for each of the components. These
could be used for examining the effects of features across segments or for providing estimations

to new observations.

In supervised learning, the value of a clustering solution is predominantly determined by its
contribution to modelling the dependent variable. Since a Gaussian mixture model belongs to
the class of unsupervised methods all variables are treated similarly with the absence of pre-
existing labels. This implicates its results cannot guarantee a relation to exist between the
clusters and the response (Wedel & Kamakura, 2001). In contrast, a mixture of regressions
aims at deriving clusters that are related to the responsiveness of a dependent variable.

Therefore, its results are likely to be of greater value when integrated into predictive analysis.

In general, a mixture model is characterized by two types of parameters: (i) the component
weights or mixture proportions m;, and (ii) the component specific model parameters 6, such
as the mean and variance for the Gaussian model. Together these form the parameter vector
@y, of the mixture method that is defined as ¢, = {my, 6}. The model assumes that the data
can be described by a mixture of K components with 7, > 0 and ¥X_, m, = 1. Here, every k"
component has its own model that is parameterized by 6. If we let Y = (Y;,...,Y,) be a p-
dimensional vector of feature variables, the density of Y can be modeled by a mixture of K
components. The conditional distribution of the data is formalized as h(y| @) =
YK mf (v |6y, where f(y | 8,) refers to the p-variate density function of the data under

component k.

The parameters of the mixture model ¢, can be estimated using the maximum likelihood
principle. For a random sample of N observations {y;, ..., ¥y} the log-likelihood function of
@, is defined as Log L = YN_, log h(y,, ). In general, it is analytically impossible to derive

the maximum likelihood estimates of ¢, by differentiating this function (McLachlan &

13



Basford, 1988). Therefore, the expectation maximization algorithm (EM) as introduced by
Dempster, Laird and Rubin in 1977 is commonly used to obtain estimates of the parameters.
This algorithm provides a generic approach for calculating the maximum-likelihood estimates
in a variety of instances with incomplete data. Since the group membership of observations in

the mixture model is unknown, EM provides a practical workaround for obtaining the solution.

To estimate the parameters of a mixture model, EM operates as a two-step algorithm. It iterates
between calculating the posterior probabilities of each observation for a fixed set of model
parameters and then optimizing the model parameters given these posterior probabilities
(McLachlan & Basford, 1988). The posterior probability t;(y, | ¢;) is the probability that

y,, belongs to the i*" component of the mixture and can be expressed using Bayes’ Theorem as

follows t;(y,, | ;) = 5 mif (yn | 67)

—=——————. After several iterations, the algorithm converges to a
k=1 i f (Yn | Ok)

local maximum for a set of @, corresponding to the maximum likelihood solution.

To extent upon a general mixture model, consider the following mixture of regressions
h(y | x, o) = XK_ m.f (¥ | x, ;). Here, y represents a (possibly multivariate) dependent
variable that follows the conditional density h related to a vector of independent variables x. If
f corresponds to a univariate normal density with mean S, x and variance o such that 8, =
(Brx, of ), the model describes a mixture of standard linear regressions (DeSarbo and Cron,
1988). The log-likelihood for a random sample of observations is given by Log L =

N_1log h(y,|x,, @k). To obtain the maximum likelihood estimates of the model parameters

the model relies on the same EM procedure as described earlier.

A central question in every mixture model is to determine the number of components K to
include in the mixture. McLachlan and Rathnayake (2014) have written a paper on this subject
where they review different methods that are commonly used to answer this question. In
general, there are two approaches for choosing K that both rely on comparing the mixture
solutions for different number of components. First, an information criteria that is based on
some penalized form of the log-likelihood can be consulted such as the Bayesian Information
Criterion (BIC). Second, a formal hypothesis test can be performed using the likelihood ratio
test. However, since the null distribution of the likelihood ratio test statistic does not meet the
standard regularity conditions it may lead to biased results (McLachlan & Rathnayake, 2014).

14



2.3.4. Multinomial Logistic Regression

The segmentation of new observations cannot be directly inferred since these are related to the
unknown price of an impression. Therefore, a new model needs to be trained that assigns each
testing observations to one of the derived segments. Since the variable of interest is qualitative,
a classification model should be set-up in order to predict this outcome. There are many
different types of classification techniques, but this paper adopts the multinomial logistic
regression for this task. The reason for choosing this model is because it is one of the most
common methods for linear classification and can return a probabilistic classification for new
data points (Friedman, Hastie & Tibshirani, 2001).

In its basic form, the logistic regression is used to model the probability of a binary dependent
variable to one or more predictor variables. Here, it relies on the logistic function to prevent
insensible predictions below zero or above one from occurring as would be the case when using
a linear function for modelling this relation (James et al, 2013). Subsequently, maximum

likelihood is used to derive the estimated parameters of the regression model.

Mathematically, the logistic function that relates a predictor variable X to the binary dependent

eBO+B1X

variable Y can be expressed as P(Y = 1|X = x) = —z—7 %

This yields an S-shaped curve

to visualize the relation between X and Y, which always provides estimates of Y that fall within

the domain [0,1] regardless of the values of X (James et al, 2013). We can rewrite the logistic

pY=1X=x) _
-PY=1X=x)"

function to return the odds of Y as a function of X in the following way -

ePotP1X By taking the logarithm of both sides we obtain the log-odds or logit of Y, which is

expressed as a linear function of X given by Iog(:f}(/;;ﬁ X==x9)c)> = B, + 1 X.

To estimate the parameters of the logistic regression the maximum likelihood approach is used
(James et al, 2013). For a given sample of n observations of x and y withi = 1, ..., n the log-
likelihood function can be defined as Log L = [l;y,=1p(v; = 1|x;) Hi’|3’il=0(1 —ply;, =
1|xi)). By maximizing this function, we can derive the maximum likelihood estimates for the

model parameters. This yields values for B, and B; so that the sample is most likely under the

model.
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The logistic regression can be extended beyond the analysis of binary variables to handle the
case of categorical variables with more than two categories (Menard, 2002). When a logistic
regression is generalized to solve multi-class problems it is often referred to as a multinomial
logistic regression. A common approach for setting up such a model is to nominate one value
of the dependent variable as reference category (Menard, 2002). The probability of
membership of all other categories is calculated relative to this baseline by defining multiple

functions.

If we consider Y to be a multinomial variable with K classes that are related to X, the

corresponding log-odds can be modeled as log (P(i;ﬂl(llf;)x)) = Prot+P11X,--s

log (P(Y :P(I::;lxlzlf) - x)) = Bx-1,0 + Bx-11X. Note that Y is modeled using K — 1 equations
and that for K = 2 it returns to the logistic regression for a binary outcome variable. Estimating
the parameters of a multinomial logistic regression proceeds in a similar way as for the regular
logistic regression and can be accomplished with the maximum likelihood procedure

(Friedman, Hastie & Tibshirani, 2001).

2.3.5. K-Nearest Neighbors

With the surge of data and computational power over the last decades, the field of machine
learning has significantly grown. This discipline offers researchers the opportunity to combine
elements of computer science and statistics for powerful yet flexible modelling. Its methods
have become increasingly popular in various applications including the auction domain. Here,
Jank and Shmueli (2010) have applied a K-nearest neighbors algorithm (KNN) that proved

very competitive to a linear model — especially in the case of heterogeneous auctions.

KNN is one of the simplest and most well-known techniques in machine learning (James et al.,
2013). In contrast to a linear model, KNN belongs to the class of non-parametric models
meaning it requires no assumptions regarding the true shape of the regression function. Instead,
it relies on the assumption that the response variable of a new observation is strongly related

to the response value of the most similar objects in the dataset.

For each new observation x,, KNN aims to identify the K most similar points in the data

represented by N,. Here, similarity is often measured using the Euclidean distance or a related
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distance measure. To control for a different scale of the independent variables and increase
model accuracy, the data is often first normalized before calculating the distance measure
(Friedman, Hastie & Tibshirani, 2001). After the model has found the K closest points, it will

use these to form a prediction of the new observation its response. In a regression, the
prediction of the response variable is calculated as ﬁz%inENoyi withi =1, ..., K.

Intuitively, the target variable of a new observation is estimated by taking the average value of

that variable from the K most similar points in the data.

Determining K is an imperative task because its value can influence predictions and is strongly
related to the bias-variance trade-off. In statistics, bias is defined as the systematic error of an
estimator and can have various problems at its root (James et al., 2013). The variance of a
statistical method refers to the degree to which the predicted outcome changes when different
training data is used for estimation root (James et al., 2013). For KNN, a small K will have a
low bias and a high variance whereas larger values for K typically lead to a lower variance at
the cost of a higher bias. In general, the desired value for K will depend on the application and

the needs of the end-user.

In this research, the objective is to maximize prediction accuracy of the models. Therefore, K
will be chosen as to improve correctness of the model. This can be accomplished by finding a

value for K that minimizes the mean absolute error (MAE) of the predictions, which is defined
as MAE == ™ lyvi — »|. However, the reference data cannot be used for evaluating the
n

model since it will lead to severe overfitting.

Extracting a validation or hold-out set at the beginning of the analysis can help overcome this,
but a more robust solution is to cross-validate the training data for calculating the MAE. Cross-
validation (CV) is a refinement of the validation approach that is based on resampling without
replacement. A common CV method is k-fold cross-validation, which is based on randomly
dividing the data into k equal sized groups or folds (James et al., 2013). The first fold serves as
validation set with the remaining k — 1 groups being used for training the model. Subsequently,
the hold-out set is used for calculating the error after which the process is repeated k times,

each time picking a different validation set. The k-fold cross-validated error CV, that can be
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calculated from this method is expressed as CV,, = %Zﬁ‘:l MAE;. By plotting this error against

a range of values for K, the optimal number of neighbors can be determined.

2.3.6. Artificial Neural Network

The Artificial Neural Network (ANN) is a fundamental component of deep learning — a sub-
field of machine learning which models are inspired by the biological brain. Analogous to a
brain, the ANN is made up of many simple processors (neurons) that operate in parallel, are
widely connected and learn from experience (Specht, 1991). More specifically, the network
can learn to perform a task by considering a set of examples without the need of being
programmed with task-specific rules. This in contrast to regular machine learning algorithms

that do require this type of pre-programming.

ANNSs have a proven track-record across a variety of applications. In recent years, many
machine learning and pattern-recognition competitions have been won by extensive versions
of the model (Schmidhuber, 2015). Furthermore, commercial neural networks are now able to
perform with sufficient precision to be used in various organizations such as banks and
distribution centers. One of the reasons behind ANN’s performance lies in its ability to capture
complex patterns that less sophisticated techniques are unable to do. This might be beneficial
in the task of grasping the complexity of bidding behavior. For example, Jank and Shmueli
(2010) included a neural network in their model comparison for predicting the final price in

online auctions where it ranked among the best performing methods.

The neurons constituting the network are structured in different layers as is shown in the
schematic diagram in Figure 2 (Nielsen, 2015). The number of neurons for a given layer is
equal to n with i = 1, ...,n and the number of layers in the network equals k with j = 1, ..., k.
Consider each neuron to be an object that can process and hold information expressed by a
numerical value known as its activation a; ;. The first layer of the network is called the input
layer and it takes in the information corresponding to the dependent variables. Hence, the
number of input neurons is equal to the number of explanatory variables. The last layer is
called the output layer, which provides a final prediction of the independent variable. Here, the
number of output neurons is equal to the number of target classes in classification or equals

one for regression tasks. All neurons in between belong to the hidden layers of the network that
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produce most of the model’s calculations. The number of hidden layers is somewhat arbitrary

and depends on the complexity of the data and available computational power (Nielsen, 2015).

The neurons of neighboring layers are all connected to each other through channels with every
channel containing a number known as a weight w. When the activation of a neuron is
transmitted to the next neuron it gets multiplied by this weight. In addition, the neurons in the
hidden layer contain a value for bias b and some activation function a(x) for processing the
input. The bias is added to the input sum of weighted activations to control for when a neuron
starts getting meaningfully active. Afterwards, this weighted sum together with the bias gets
passed through the activation functions to determine the activation of the neuron.

Mathematically, this activation can be expressed as follows a;; =o(wy;_ja;;-1 +

Wy 10z j-1 + -+ Wy j_1ay j_1 + b; ;). There are different forms of the activation function,

1
1+eX

but most commonly used is the sigmoid function that is formalized as o(x) = (Nielsen,

2015). Applying these calculations to all neurons in the network will yield the predicted value

of a given observation.

The process being described above is known as forward propagation. On its own, forward
propagation cannot learn from the data since no training steps are involved in its sequence. To
successfully spot underlying patterns the addition of backward propagation is needed. Starting
at the output layer, the error is computed by subtracting the predicted output a from the actual

target value y(x), which is formalized in the following cost function C(w,b) =

2
%Z |y(x) — a| where n refers to the total number of training inputs. The magnitude and

direction of the error are then transferred back into the network after which the weights and

biases get adjusted to reduce the cost.

A solution is derived by using the gradient descent algorithm, which is an optimization
technique that iteratively tries to find the direction of the steepest descent in a function using
partial derivatives (Nielsen, 2015). To limit calculation time, the stochastic gradient descent
technique is commonly used in ANN. Here, the data is first divided into multiple batches before

finding the gradient descent and recalculating the weights and biases.
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Figure 2
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Note. Adapted from Neural Networks and Deep Learning, by M.A. Nielsen, 2015.

2.4. Model Selection

In 1987, Box stated: “Essentially, all models are wrong, but some are useful” (p. 424). This
contributed to the both technical and philosophical discussion regarding the true definition of
a model and how its usefulness should be expressed. A common approach is to try and capture
this using a statistical performance metric. In the field of model selection, various methods
have been formalized to compare different models’ performance for determining the most

optimal one (Friedman, Hastie & Tibshirani, 2001).

The types of performance metrics can roughly be broken down into two categories (Breiman,
2001). First, there is the type of measures focusing on goodness-of-fit such as the Akaike
information criterion (AIC) and the BIC. Second, there are metrics that rely on prediction
accuracy for model validation. Examples include the root mean squared error (RMSE) and the
mean absolute error. What measurement is more appropriate depends on the objective of

research and the richness of data (Friedman, Hastie & Tibshirani, 2001).

In this paper, both linear and machine learning techniques have been evaluated on their
performance. However, since the machine learning models are not linear in their parameters,
likelihood measures such as the AIC and BIC cannot be directly calculated (Friedman, Hastie
& Tibshirani, 2001). Moreover, predictive power has been considered a central component of
this research where data scarcity was not an issue. Therefore, it was chosen to rely on an error-

based measure for the model selection procedure.
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The RMSE and MAE are both regularly used performance metrics in studies on model
evaluation (Chai & Draxler, 2014). Although appearing similar, there are some distinct
differences among the two. Most notably is that the RMSE penalizes variance in the error terms
by giving a heavier weight to larger absolute values of the error (Chai & Draxler, 2014). In
contrast, the MAE applies the same weight to each error regardless of its magnitude and is

therefore not sensitive to variability in the errors.

Mathematically, the error measures are defined as RMSE = \/%Z?ﬂ(}’i — %)% and MAE =

% ™1 lvi = »|- When both calculated, the result of the RMSE will always be greater or equal

to that of the MAE. The difference between the two terms indicates how much variability is
present among the residuals and can be used for statistical inference. Instead of choosing one
metric over the other, Chai and Draxler (2014) recommend using a combination of measures
to better capture the differences of model performance. For this reason, both metrics were used

for evaluating the performance across models.

Calculating the error measure for model selection should exclusively be done for a testing set.
This prevents favoring a model that has modeled the noise of the training data known as
overfitting (James et al., 2013). In other terms, the testing error serves as a better estimate of
model performance in a real-world setting than the training error. Consequently, 33% of the
data was withheld at the beginning of this research. After training the model on the remaining

67% of the data, this testing set was used to compute the error measures of the models.

3. RESULTS

3.1. Linear Model

As the first predictive model in this research a multiple regression was performed to capture
the linear relationship in the data. More specifically, the price that was paid for an impression
on the RTB market was modelled as a linear function of multiple variables including
information on the user and the ad slot. An extensive overview of the regression results can be
found in Table B2. The R? value of 0.283 signaled that roughly one-fourth of the variance in

the paying price has been explained by the variance of the independent variables. Here, the
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variables with the strongest relation to the price according to their t-values were the floor price,

the ad exchanges and the ad sizes.

The diagnostics of the regression model have been presented in Figure Al. When inspecting
these plots, multiple violations to the assumptions of the linear model could be observed. For
example, the upper left plot showed how the residuals of the fitted values differ for the lower
and higher prices versus those from the middle segment. This inconsistency indicates that the
data may not adhere to a linear relationship which violates a fundamental assumption of the
regression model (James et al., 2013). Furthermore, the Q-Q plot in the upper right plot shows

that non-normality in the errors is likely present which contradicts another model assumption.

3.2. Box-Cox Transformation

To combat the model violations of the linear regression, a Box-Cox transformation of the
dependent variable was performed. By calculating the log-likelihood for different values of
lambda in de domain of minus one to one the most optimal power transformation for the linear
model was obtained. Figure 3 displays the levels of log-likelihood for every lambda with a
95% confidence interval of the values that have the highest likelihood. Since the value one was
not included in this domain, a transformation was required. The optimal value for lambda
amounts to 0.26, but since 0.25 lies within the interval — and offers a more intuitive relation —

it was set as transformation parameter.

Figure 3

Optimal Lambda from Box-Cox Analysis
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After finding the optimal value for lambda, a new linear model was fitted that included a power
transformation of the dependent variable as obtained by the Box-Cox analysis. The diagnostics
of this model have been presented in Figure A2 and showed multiple improvements in
comparison to the first linear model. For instance, the residuals contain less bias and average
to zero for the vast number of fitted values. Moreover, the Q-Q plot is more centered towards
the diagonal indicating the residuals are more normally distributed. Altogether, these results
showed the regression assumptions were better met for the Box-Cox model which signaled that

its statistical results should be more statistically sound.

The results of the Box-Cox model have been presented in Table B3. Despite the improvements
of the regression diagnostics, the R? of the model slightly decreased to 0.272. Hence,
transforming the dependent variable did not lead to a better fit of the regression. When
inspecting the regression coefficients, there are no remarkable differences in comparison to
those of the regular regression. Although the magnitude of the coefficients evidently shrunk
due to the transformation of the dependent variable, the t-values and direction of the

coefficients have stayed predominantly similar.

3.3. Finite Mixture of Regressions

To address market heterogeneity, a market segmentation analysis has been performed using a
finite mixture of regressions (FMR). By fitting a mixture of regressions to the training data, the
component-based structure of the variables was obtained returning sub-groups with a varying
responsiveness of the price towards the other variabels. Afterwards, the regression models
corresponding to these segments were used to set-up a predictive model for estimating the price

of the testing data.

The number of components to include in the mixture was determined using the BIC. This is a
common metric for comparing different mixture solutions (McLachlan & Rathnayake, 2014).
In this paper, a negatively oriented version of the BIC was adapted meaning we aim to
minimize this value. Since the underlying EM algorithm converges to a local maximum, it has
been run repeatedly with different starting values to select the optimal version of each model.
In total, every mixture of regressions has been fitted five times for K = 1, 2, ...,8 components

after which the best of each set of models was selected. In Figure 4, the results of this tuning

23



analysis have been presented. Since the BIC did not vastly improve for mixtures with more

than four components it was chosen to set K = 4.

Figure 4
BIC for Different Number of Components of the FMR
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The final mixture model used four regressions to model the data each representing a different
segment in the market for display advertisements. To visually assess the quality of a clustering
solution we can inspect the rootogram of posterior class probabilities over the components
(Leisch, 2004). A rootogram is very similar to a histogram, but its height bars are on a rooted
scale so low counts become more visible and peaks less emphasized. If the posterior
probabilities in a rootogram are concentrated towards 0 and 1 it means the components are
well-separated. In Figure 5, the rootograms following from the mixture of regressions in this
paper have been presented. This shows that segments 1 and 2 are relatively distinctive while 3

and 4 less so.
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Figure 5
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An overview of the regression coefficients over the components has been provided in Table
B4. The variability among these values confirmed that the components picked up different
patterns in the data representing a varying responsiveness within the market segments. For
example, the first segment modeled observations whose price was almost fully determined by
the floor price with a few corrections for the ad exchange, size and visibility. In contrast, the
second segment contained impressions whose price was less strongly related to the floor price,

but more heavily to the size and region of the ad slot.

To integrate the results of the finite mixture regression into a predictive model both a hard and
soft clustering approach have been applied. Hard clustering assumes that each observation
belongs strictly to one cluster or segment (Yang, 1993). In line with this assumption, the price
of a testing observation was predicted by first selecting the segment it has the highest
probability of belonging to as estimated by the classification analysis. Subsequently, the
corresponding regression model from the finite mixture of regressions was used to predict its
price. In contrast, a soft clustering assumes that each data point can belong to multiple segments

with a varying degree of (un)certainty (Yang, 1993). Here, the price of a new observation was
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predicted by multiplying the predictions of the four regression models with the estimated

probabilities of segment membership from the classification model.

3.4. Multinomial Logistic Regression

Since the paying price of the testing data has been considered unknown, it was impossible to
derive its group membership directly using the posterior probabilities of the mixture model.
Therefore, a multinomial logistic regression model has been set-up to model the probabilities
of a testing observation in belonging to each of four the segments. The model was trained by
relating the predictor variables of the training data to the segments that were derived using the
finite mixture of regressions. Here, the training observations were first assigned to the segment
they had the highest probability of belonging to as expressed by the posterior probabilities.
Next, the performance of the logistic regression model was evaluated by comparing the

predicted classes with the actual segments in a confusion matrix as presented in Table 1.

Table 1

Confusion Matrix of Multinomial Logistic Regression

Reference
1 2 3 4
1 1503 151 237 272
Prediction o g4 475 378 231
3 107 402 593 463
4 264 402 501 677

From Table 1 can be seen that the model performs particularly well at predicting the first
segment which has a balanced accuracy of 82.3%. For all the other segments the model is a
much poorer predictor which have respective balanced accuracies of 60.4%, 57.6% and 59.1%.
This, however, comes as no surprise since the rootogram in Figure 5 shows that segment one

is clearly most separable when compared to the others segments.

3.5. K-Nearest Neighbors
The first machine learning technique used in this research is the KNN model. Contrary to the
previous models, KNN is not parameterized by a linear function but it estimates the price of an

observation using its similarity to other data points. Since this is measured in distance, the
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independent data has been normalized using the min-max transformation prior to the analysis

to exclude scale as a factor of influence.

Training the model required one significant training step, which was to determine the number
of neighbors that had to be considered for calculating the predicted value. This has been derived
by performing a 5-fold cross-validation on the training data and averaging the MAE for
different numbers of neighbors across the cross-validated samples. The results of this analysis
are presented in Figure 6 that shows the optimal value of K to be equal to nine. Hence, the
predicted price of a testing observation is calculated by taking the average value of the nine

most similar training observations.

Figure 6
Cross-validated Error for number of Neighbors in KNN
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3.6. Artificial Neural Network

For the last predictive model in this research a neural network was trained. Since this method
can easily take a long time to calculate, region id was omitted from the set of predictors. This
variable did not show a great contribution at the other models and its many categories would
impose a great computational expense on the network. In addition, the ANN algorithm only
handles numerical inputs. Therefore, the categorical data were converted to numerical variables
using a one-hot encoding. Furthermore, a min-max transformation was applied to scale the

predictor variables.
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To calculate the activations of the neural network, the commonly used sigmoid function was
adopted (Nielsen, 2015). The propagation algorithm that has been used for iteratively
recalculating the weights was the resilient backpropagation algorithm. This algorithm was
designed by Riedmiller and Heinrich Braun in 1992 and has increased efficiency in comparison

to regular backpropagation.

The resulting network was set-up using a series of trial and error on the training data since the
model is too computationally expensive to cross-validate. Nodes and layers were added until
the model would no longer improve or converge. This led to a single-layer neural network with

8 nodes as visualized in Figure A3.

3.7. Model Selection

After having trained the models on the training data their performance was evaluated using the
testing set. First, the price of every testing observation was predicted using the different
models. Next, the performance measures were calculated by comparing the predictions to the
actual price that was paid for an impression. This resulted in the following overview of

performance metrics for the model comparison as presented in Table 2.

Table 2
RMSE and MAE of Predictive Models
RMSE MAE
Linear Regression model 54.16 41.83
Regression model with Box-Cox transformation 56.01 39.49
Finite Mixture of Regressions with soft clusters 53.32 38.74
Finite Mixture of Regressions with hard clusters 62.55 40.73
K-nearest neighbors model 54.62 40.82
Artificial Neural Network 54.54 40.87

In general, it can be concluded that the models are relatively poor at predicting the price of an
advertisement considering that the variable has a mean of 77.2 and a standard deviation of 64.4.

This could indicate that the independent variables in this research were not strongly related to
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the price that was paid for an impression. Alternatively, the techniques that have been used

might be unable to capture the appropriate patterns in the data related to pricing.

Table 2 also shows that the RMSE is consequently higher than the MAE. The differences
between these error metrics range from approximately 30% to 50% for the predictive models.
This suggests that there is variance present in the errors as the RMSE penalizes larger absolute
values of the error term (Chai & Draxler, 2014). The origin of this variance can be observed
from the diagnostic plots in Figure Al and Figure A2, which display the difference between
the fitted vs the actual price for the regressions. These figures show that the highest absolute
errors are strongly centered around the lower predictions and almost non-occurring for the
higher predictions. This indicates that the extreme errors are mostly due to missing high-priced

impressions instead of overpricing cheaper ad slots.

The most promising model that was used for predicting the price of an impression was the
finite mixture of regressions with soft clusters. It ranked highest on both performance metrics
when compared to the other models. This could indicate that controlling for market
heterogeneity may improve prediction accuracy of pricing models in the RTB market.
However, since the differences in error terms are relatively small the evidence is not
conclusive. This could potentially be further increased by training a more sophisticated

classification algorithm to more accurately assign new observations to the derived segments.

In any case, the mixture model performed at its best when using a probabilistic or soft clustering
of the market segmentation to predict the price. Both error metrics improved for the predictions
made with soft clusters when compared to hard clusters. This means that the price of an
impression is better described by a mixture of segments than by a single one and the segments

should not be interpreted as ground truths.

4. CONCLUSION
In this research, an effort has been made in modelling the paying price of an impressions in the
real-time bidding market for display advertisements. After describing the RTB eco-system and
introducing the dataset, multiple statistical and machine learning models were trained to predict
the price of a digital advertisement slot. Finally, their performance was evaluated by comparing

the error measures resulting from predicting prices for a testing set.
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The results reveal that the models are moderately accurate in predicting the price of the testing
data. This could be explained by two limiting factors. First, the feature data may not be strongly
related to the price of an impression. Individual valuations of the customer could vastly differ
over the advertisers without general trends. Moreover, it could be possible that advertisers are
in possession of more data through data exchanges and cookie data to base their bids on which
are not included in this research. Second, the statistical models used in this research might not
be able to model the patterns that relate the prices to the advertisement data. If advertisers use
sophisticated statistical techniques to determine their valuation more complex patterns in the

data might be present.

Another finding of the analysis is that there exists a systematic discrepancy between the two
error terms that are used. The RMSE is consistently higher than the MAE, which suggests that
variability in the errors is present. This is partly driven by the inability of the models to
accurately detect and predict highly priced impressions. The reasons for this obstacle are likely
similar to those that generally impede the model performance. Advertisers may use strategic
prospecting and retargeting algorithms to determine their bids. When retargeting a customer
using cookie data they can start aggressively bidding on the digital ad space of the user. This
behavior can be difficult for algorithms to learn and becomes more complex if valuations

greatly differ across advertisers.

Incorporating a market segmentation to predict the price of an impression shows a slight
improvement compared to the other pricing models. By fitting a mixture of regressions,
multiple segments with a varying responsiveness of the price to the predictors can be derived
that control for some degree of market heterogeneity. Combined with a classification model
that provides a probabilistic segmentation of new observations, this method ranks as best
performing method in this study. However, the difference in accuracy to other models is small
and overall error rates remain an issue. Therefore, more research is needed to assess the
competitiveness of such a stacking model in the RTB market or for different applications with

market heterogeneity.

In general, the RTB market for display advertisements shows to be a challenging environment
to model. This makes it difficult for a publisher to obtain an accurate understanding of the value

of its ad space to the advertising industry. Future research could try to overcome this in various
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ways. Adding more personal data may naturally improve predictions, but this might be hard to
come by for public use. Furthermore, incorporating a stronger advertiser oriented approach for
modelling price may help better detect highly valued impressions. This could be accomplished
by including click-through-rates and conversion rates as subcomponents of the prediction
model. As a result, overall performance will likely improve and a better understanding of the

market can be obtained.
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Appendix A. Figures

Figure Al
Model Diagnostics Linear Model
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Figure A2

Model Diagnostics Linear Model with Box-Cox Transformation
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Figure A3
Neural Network Structure for a Single Hidden Layer with 8 Nodes
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Appendix B. Tables

Table B1
Overview iPinYou Log Data Format

Col # Description Example
1 Bid_ID 5df19fc12elea5fd2809a630ced62725
2 Timestamp 20131021211100500
3 Log_Type 1
4 iPinYou_ID D8NLsb7Wx0D
5 User_Agent Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;
WOWS64; Trident/5.0)
6 IP 60.28.101.
7 Region_ID 2
8 City_ID 2
g9 Ad_Exchange 4
10 Domain f8febfla31b70b3c14ef8338756254e8
11 URL 3d8ad5f8c014bc3dc09861c37788f835
12 Anonymous_URL null
13 Ad_Slot_ID 9223372032560700000
14 Ad_Slot_Width 960
15 Ad_Slot_Height 90
16 Ad_Slot_Visibility FirstView
17 Ad_Slot_Format Na
18 Ad_Slot_Floor Price 0
19 Creative_ID 10717
20 Bidding_Price 294
21 Paying_Price 20
22 Landing_Page URL null
23 Advertiser_ID 2821
24 User Profile ID 1,005,713,800,100,590,000,...,000
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Table B2

Regression Output Linear Model

Estimate Std. Error t-value Pr(>|t))
(Intercept) 24.01 11.49 2.09 0.04
Ad_Slot_Floor_Price 0.58 0.02 31.01 0.00
Region_ID1 19.65 5.51 3.56 0.00
Region_ID2 7.73 6.96 111 0.27
Region_ID3 11.35 5.42 2.10 0.04
Region_ID15 4.14 6.37 0.65 0.52
Region_ID27 1.79 7.76 0.23 0.82
Region_ID40 9.75 6.03 1.62 0.11
Region_ID55 11.56 6.96 1.66 0.10
Region_ID65 8.86 6.65 1.33 0.18
Region_ID79 19.16 6.10 3.14 0.00
Region_ID80 12.29 5.17 2.38 0.02
Region_ID9%4 8.76 5.21 1.68 0.09
Region_ID106 11.07 5.88 1.88 0.06
Region_ID124 9.35 6.04 1.55 0.12
Region_ID134 10.24 6.94 1.48 0.14
Region_ID146 17.27 5.18 3.33 0.00
Region_ID164 8.94 5.48 1.63 0.10
Region_1D183 3.33 5.64 0.59 0.56
Region_ID201 12.77 6.10 2.09 0.04
Region_ID216 9.47 4.52 2.09 0.04
Region_ID238 6.89 6.45 1.07 0.29
Region_ID999 0.50 5.31 0.09 0.93
Region_ID275 10.29 7.25 1.42 0.16
Region_ID276 10.70 5.72 1.87 0.06
Region_1D308 12.17 7.66 1.59 0.11
Region_ID333 9.63 6.11 1.58 0.12
Ad_Exchange?2 -40.38 3.12 -12.95 0.00
Ad_Exchange4 -71.35 3.67 -19.46 0.00
Ad_ExchangeOther -30.41 9.86 -3.08 0.00
Ad_Slot_VisibilityFirstView 15.44 2.38 6.49 0.00
Ad_Slot_VisibilityFourthView -7.48 4.33 -1.73 0.08
Ad_Slot_VisibilitySecondView 7.09 3.81 1.86 0.06
Ad_Slot_VisibilityThirdView -16.28 4.23 -3.85 0.00
coef.Ad_Size120x600 62.62 8.88 7.05 0.00
coef.Ad_Size160x600 55.50 9.04 6.14 0.00
coef.Ad_Size200x200 37.34 8.29 451 0.00
coef.Ad_Size250x250 31.27 8.12 3.85 0.00
coef.Ad_Size300x250 58.50 7.75 7.55 0.00
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coef.Ad_Size336x280
coef.Ad_Size468x60
coef.Ad_Size620x60
coef.Ad_Size728x90
coef.Ad_Size950x90
coef.Ad_Size960x90
WeekdaySun
WeekdayMon
WeekdayTue
WeekdayWed
WeekdayThu
WeekdayFri
DaypartEarlyMorning
DaypartMorning
DaypartNoon
DaypartAfternoon
DaypartEvening

PC

BrowserExplorer
BrowserOther
BrowserQQBrowser
BrowserSafari

46.99
46.98
6.17
49.99
34.63
47.49
-3.42
227
5.23
5.61
-7.65
0.00
11.71
13.69
10.84
13.48
13.97
371
4.04
9.21
1.43
12.57

7.96
10.06
9.34
7.81
9.44
8.49
3.02
2.77
2.50
3.06
3.22
2.85
4.73
2.93
3.06
2.43
2.71
6.82
1.64
2.45
3.20
6.85

5.90
4.67
0.66
6.40
3.67
5.60
-1.14
-0.82
2.09
1.83
-2.37
0.00
2.48
4.67
3.54
5.55
5.15
0.55
2.46
3.77
0.45
1.83

0.00
0.00
0.51
0.00
0.00
0.00
0.26
0.41
0.04
0.07
0.02
1.00
0.01
0.00
0.00
0.00
0.00
0.59
0.01
0.00
0.65
0.07

Signif. codes: 0 “*** 0.001 ‘** 0.01 ‘*> 0.05 . 0.1 <> 1
Residual standard error: 54.59 on 6639 degrees of freedom
Multiple R-squared: 0.2833,

F-statistic: 43.73 on 60 and 6639 DF, p-value: < 2.2e-16
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Table B3

Regression Output Linear Model with Box-Cox Transformation

Estimate Std. Error t-value Pr(>[t])
(Intercept) 2.34 0.17 13.94 0.00
Ad_Slot_Floor_Price 0.01 0.00 30.46 0.00
Region_ID1 0.28 0.08 3.48 0.00
Region_ID2 0.13 0.10 1.29 0.20
Region_ID3 0.13 0.08 1.65 0.10
Region_ID15 0.07 0.09 0.71 0.48
Region_ID27 0.02 0.11 0.17 0.86
Region_ID40 0.17 0.09 1.95 0.05
Region_ID55 0.16 0.10 1.53 0.13
Region_ID65 0.12 0.10 1.19 0.23
Region_ID79 0.31 0.09 3.43 0.00
Region_ID80 0.16 0.08 2.14 0.03
Region_ID9%4 0.11 0.08 1.43 0.15
Region_ID106 0.12 0.09 1.36 0.17
Region_ID124 0.14 0.09 1.64 0.10
Region_ID134 0.09 0.10 0.92 0.36
Region_ID146 0.26 0.08 3.49 0.00
Region_ID164 0.14 0.08 1.70 0.09
Region_ID183 0.04 0.08 0.48 0.63
Region_ID201 0.13 0.09 1.43 0.15
Region_ID216 0.15 0.07 2.23 0.03
Region_ID238 0.08 0.09 0.82 0.41
Region_ID999 -0.03 0.08 -0.41 0.68
Region_ID275 0.15 0.11 1.43 0.15
Region_ID276 0.15 0.08 1.86 0.06
Region_ID308 0.16 0.11 1.43 0.15
Region_ID333 0.13 0.09 1.43 0.15
Ad_Exchange2 -0.62 0.05 -13.57 0.00
Ad_Exchange4 -1.03 0.05 -19.19 0.00
Ad_ExchangeOther -0.29 0.14 -2.03 0.04
Ad_Slot_VisibilityFirstView 0.25 0.03 7.19 0.00
Ad_Slot_VisibilityFourthView -0.08 0.06 -1.26 0.21
Ad_Slot_VisibilitySecondView 0.19 0.06 3.47 0.00
Ad_Slot_VisibilityThirdView -0.19 0.06 -3.04 0.00
coef.Ad_Size120x600 0.99 0.13 7.64 0.00
coef.Ad_Size160x600 0.95 0.13 7.19 0.00
coef.Ad_Size200x200 0.71 0.12 5.91 0.00
coef.Ad_Size250x250 0.52 0.12 4.43 0.00
coef.Ad_Size300x250 1.04 0.11 9.16 0.00
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coef.Ad_Size336x280
coef.Ad_Size468x60
coef.Ad_Size620x60
coef.Ad_Size728x90
coef.Ad_Size950x90
coef.Ad_Size960x90
WeekdaySun
WeekdayMon
WeekdayTue
WeekdayWed
WeekdayThu
WeekdayFri
DaypartEarlyMorning
DaypartMorning
DaypartNoon
DaypartAfternoon
DaypartEvening

PC

BrowserExplorer
BrowserOther
BrowserQQBrowser
BrowserSafari

0.83
0.78
0.37
1.01
0.71
0.92
-0.04
-0.02
0.07
0.06
-0.11
0.01
0.22
0.22
0.17
0.21
0.21
0.02
0.05
0.14
-0.01
0.18

0.12
0.15
0.14
0.11
0.14
0.12
0.04
0.04
0.04
0.04
0.05
0.04
0.07
0.04
0.04
0.04
0.04
0.10
0.02
0.04
0.05
0.10

7.13
5.34
2.74
8.87
5.12
7.41
-1.01
-0.47
1.86
1.40
-2.33
0.30
3.14
5.04
3.75
5.82
541
0.22
2.10
3.85
-0.26
1.80

0.00
0.00
0.01
0.00
0.00
0.00
0.31
0.64
0.06
0.16
0.02
0.77
0.00
0.00
0.00
0.00
0.00
0.82
0.04
0.00
0.79
0.07
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Signif. codes: 0 “*** 0.001 ‘** 0.01 ‘*> 0.05 . 0.1 <> 1
Residual standard error: 0.7962 on 6639 degrees of freedom
Multiple R-squared: 0.2724,

F-statistic: 41.43 on 60 and 6639 DF, p-value: < 2.2e-16
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Table B4

Regression Output Finite Mixture of Regressions

Comp.1 Comp.2 Comp.3 Comp.4
coef.(Intercept) 0.00 4.59 108.00 6.13
coef.Ad_Slot_Floor_Price 1.00 0.30 0.80 0.75
coef.Region_ID1 0.00 20.79 -1.27 1.19
coef.Region_ID2 0.00 2.07 -8.52 3.89
coef.Region_ID3 0.00 21.61 -0.89 -1.66
coef.Region_ID15 0.00 -19.85 5.99 -0.04
coef.Region_ID27 0.00 -22.73 461 291
coef.Region_ID40 0.00 10.72 -6.11 8.01
coef.Region_ID55 0.00 20.33 -7.78 -1.11
coef.Region_ID65 0.00 21.89 3.17 6.48
coef.Region_ID79 0.00 22.75 5.94 4.50
coef.Region_ID80 0.00 13.20 6.45 1.08
coef.Region_ID94 0.00 6.47 0.53 -1.74
coef.Region_ID106 0.00 22.13 -9.53 -2.43
coef.Region_ID124 0.00 9.72 1.57 0.28
coef.Region_ID134 0.00 36.11 2.14 -0.47
coef.Region_ID146 0.00 1453 4.65 0.78
coef.Region_ID164 0.00 -0.22 1.74 0.63
coef.Region_ID183 0.00 2.14 -14.57 0.14
coef.Region_ID201 0.00 19.39 32.93 2.34
coef.Region_ID216 0.00 10.49 2.02 2.61
coef.Region_ID238 0.00 13.35 -4.54 0.23
coef.Region_ID999 0.00 0.41 -15.52 -0.70
coef.Region_ID275 0.00 10.25 7.57 2.65
coef.Region_ID276 0.00 11.28 -2.31 0.60
coef.Region_ID308 0.00 9.66 3.57 -1.44
coef.Region_ID333 0.00 -1.67 2.09 0.95
coef.Ad_Exchange2 -26.00 -30.21 -89.36 4.93
coef.Ad_Exchange4 -25.00 -56.71 -90.21 -4.27
coef.Ad_ExchangeOther -26.00 -62.07 -86.68 -26.57
coef.Ad_Slot_VisibilityFirstView 1.00 22.65 18.92 6.02
coef.Ad_Slot_VisibilityFourthView 25.00 -56.44 143.17 22.81
coef.Ad_Slot_VisibilitySecondView 1.00 3.81 5.82 10.30
coef.Ad_Slot_VisibilityThirdView 11.00 15.55 0.45 13.63
coef.Ad_Size120x600 0.00 88.03 -73.89 21.95
coef.Ad_Size160x600 0.00 123.11 -72.79 4.02
coef.Ad_Size200x200 0.00 96.09 -87.47 3.86
coef.Ad_Size250x250 0.00 113.67 -76.26 -0.22
coef.Ad_Size300x250 0.00 113.11 -61.92 4.42
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coef.Ad_Size336x280
coef.Ad_Size468x60
coef.Ad_Size620x60
coef.Ad_Size728x90
coef.Ad_Size950x90
coef.Ad_Size960x90
coef.WeekdaySun
coef.WeekdayMon
coef.WeekdayTue
coef.WeekdayWed
coef.WeekdayThu
coef.WeekdayFri

coef.DaypartEarlyMorning

coef.DaypartMorning
coef.DaypartNoon
coef.DaypartAfternoon
coef.DaypartEvening
coef.PC
coef.BrowserExplorer
coef.BrowserOther

coef.BrowserQQBrowser

coef.BrowserSafari

0.00
0.00
50.00
0.00
50.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

115.44
86.86
93.00
85.94
69.60
71.91
-16.16
-16.29
-6.81
-16.42
-27.29
-15.26
13.68
25.14
23.29
20.71
22.83
5.08
3.87
4.81
7.21
26.83

-52.70
-73.07
-95.21
-62.36
-69.01
-77.87
-2.50
-2.30
-2.69
1.87
9.39
2.99
6.24
5.61
7.22
9.72
11.21
4.29
-0.88
-2.28
10.59
13.53

5.27
-2.57
28.87

9.54

150.81

2.61
-1.24
-2.65
-1.93
-0.75
-3.33
-0.52

1.55

1.03

0.82

2.45

3.90

1.24
-0.25

0.63
-3.98

7.86
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