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ABSTRACT 

Real-time bidding (RTB) is among the most influential state-of-the art marketing technologies. 

By allowing ad space to be auctioned in real-time, the market for online advertisements has 

significantly shifted, which opened a range of new research possibilities. In this paper, the price 

of ad impressions has been modelled using five different methods. By using real RTB data, a 

model comparison study was performed that aimed to discover which techniques were able to 

most accurately predict the price of ad space. Conclusevely, the results have indicated that 

accuracy was moderate across all models with no clear winners. Limiting factors could be 

attributed to data quality and model set-up. In the last section, recommendations were made on 

how performance could be improved upon in future research.  

Keywords: Real-Time Bidding, Demand-Side Platform, Digital Advertising, 

Quantitative Marketing, Bid Landscape Forecasting 
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1. INTRODUCTION 

Upon browsing the web, it is hardly impossible not to be exposed to the overwhelming amount 

of digital advertisements that are present. Not only do these ads keep increasing in volume, its 

contents are getting more and more tailored as well. This is caused by the rapid evolution within 

digital advertising, which industry has grown strongly over the past few decades. Where 

previously online ads were sold over the phone to negotiate terms, nowadays most deals are 

settled in the time it takes to load a webpage.  

 

After the first digital advertisement launched in 1994, the demand for online ad space has 

constantly risen. In 2019, digital ad spending in the US surpassed the marketing budget spent 

on traditional media and this difference is expected to continue to grow in the future 

(eMarketer, 2019). The increasing demand for online advertising inventory lies in parallel with 

the rise of global internet, which created a more complex environment for digital advertising. 

It triggered the need for more sophisticated technologies to help automate and streamline the 

process of online ad buying, which resulted in the emergence of programmatic advertising. 

This marketing technology allows to automatically buy digital ad space by predefining a set of 

parameters. Currently, businesses can use programmatic advertising to launch a targeted online 

ad campaign by entering a few input fields. 

 

The infrastructure that enables the automated buying and selling of display opportunity is 

called real-time bidding (RTB) (Wang, Zhang & Yuan, 2017). RTB is a digital auction process 

that allows ad impressions to be put up for bid in real-time on the ad exchange (ADX). There 

are generally two types of platforms connected to the ADX, which are the supply-side platform 

(SSP) and the demand-side platform (DSP). Publishers trying to sell digital ad space are 

organized under a SSP that registers their ad inventory and accepts winning bids. The DSP 

represents the advertisers and helps manage their online ad campaigns by systematically 

bidding on the offered ad space on the ADX.  

 

RTB is related to various scientific fields including finance, artificial intelligence, machine 

learning and marketing. From the perspective of advertisers, buying ad space is an investment 

of acquiring new customers with similar risks involved as to trading on the financial markets 

(Zhang et al., 2017). Furthermore, elements from artificial intelligence and machine learning 

can be used to optimize bidding strategies and minimize cost per conversion as illustrated by 

Ren et al. (2018). To marketers, RTB has reshaped the landscape of digital advertising by 
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enabling to trade impressions on a per-case basis.  This enhances transparency and efficiency 

of online campaigns by allowing for personalized advertising, which is positively related to the 

effectiveness of an ad (Tucker, 2014). Moreover, it presents a new trade-off for both advertisers 

and publishers who must now decide between reservation contracts and RTB for the buying 

and selling of ad space. This has several implications on the strategy and profitability of both 

parties as was analysed by Sayedi (2018) using a game-theoretic model.   

 

Unfortunately, a lot about RTB remains unknown due to its rapidly changing environment and 

a lack of usable datasets (Zhang, Yuan, Wang & Shen, 2014). With RTB becoming 

increasingly present in society it is imperative to obtain an adequate understanding of the 

technology and its implications. Transparency is needed regarding a variety of topics such as 

pricing, viewability, fraud and more. In this paper, focus will be dedicated to investigating 

various statistical models’ ability in predicting the price that is paid for impressions in the RTB 

market. This could provide a framework to publishers for forecasting their ad revenue and help 

understand customer value from an advertising perspective. Moreover, it might interest 

advertisers that aim to further optimize their bidding algorithms or assist economists that 

pursue to capture the characteristics of this newly opened market. 

 

By using the data of a major Chinese DSP, multiple statistical and machine learning models 

have been compared on their accuracy in predicting the price of ad space on the RTB market. 

The techniques that are used include different linear regressions, a nearest neighbor model and 

an artificial neural network. Since market heterogeneity may affect model performance, a 

mixture of regressions has been performed to assess the contribution of market segments in 

modelling ad prices. Altogether, the research aims to answer the following research question: 

How to most accurately predict the price of an impression in the real-time bidding market for 

display advertisements? 

 

This paper comprises the following structure. In the next section, the methodology of this 

research will be extensively covered. This includes a summary of the RTB environment, a 

general description of the data, and an explanation of the statistical techniques and selection 

criteria that are used. Subsequently, the results of the statistical models are presented and 

evaluated. Lastly, the final section lists the concluding remarks, discusses the limitations and 

provides recommendations for future research.  
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2. METHODOLOGY  

 

2.1. Real-Time Bidding Ecosystem  

The first platforms focusing on the RTB-based trading of ad impressions emerged over a 

decade ago and are currently known as ad exchanges (Wang, Zhang & Yuan, 2017).  Contrary 

to a traditional ad network (ADN), these ADXs introduced real-time auctions to balance and 

centralize the demand and supply in the digital advertising market. This fundamentally changed 

the landscape of online advertising in multiple areas. Their entrance signified the shift from 

contextual advertising to behavioral targeting in display advertising and presented a range of 

new benefits to advertisers and publishers. Furthermore, RTB significantly scaled up the 

transaction volume in display advertising which is now likely to exceed the daily number of 

shares that are traded on the financial market (Wang, Zhang & Yuan 2017). 

 

To capture the RTB system, it is useful to first zoom in on a simplified path of an individual 

impression as described by Wang, Zhang and Yuan (2017). For every user that visits a 

webpage, an impression is generated at a web publisher. In the time it takes the page to load, 

an ad request gets sent to an ADX that queries the bids from different advertisers. The 

advertiser with the highest bid is selected and notified after which its ad gets displayed to the 

specific user. Lastly, the advertiser can track user feedback such as whether the person clicked 

or converged following from the ad. Altogether, this entire process – from the impression being 

fetched to the advertisement being shown – takes approximately 100 milliseconds (Wang, 

Zhang and Yuan, 2017).  

 

There are multiple entities that play an important role in the RTB process. In general, there are 

two main platforms connected to the ad exchange which are the supply-side platform and the 

demand-side platform (Yuan, Abidin, Sloan & Wang, 2012). A SSP represents the publishers 

by automatically registering ad space, accepting bids and placing ads. It aggregates the 

impressions of multiple publishers and ADNs, which are then put up for bid on the ADX. A 

DSP serves the advertisers in their digital ad campaigns by automatically bidding for 

impressions on multiple ADXs. The platform relies on sophisticated algorithms for doing so 

that provide a competitive return to clients. This return is often measured using the expected 

value of conversions and clicks that follow from an ad campaign (Wang, Zhang & Yuan 2017).  
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To train the algorithm, it requires user data. Some of this is automatically provided by the 

publisher at the time the impression gets created. However, since comprehensive user data is 

in such high demand, data exchanges (DX) emerged to seize the profit opportunity. A DX 

collects historical user data using advanced information technology, which it sells to companies 

in the digital advertising market. A graphical overview that summarizes the RTB environment 

is provided in Figure 1 (Yuan et al., 2012). 

 

To successfully trade ad impressions, the auction set-up adopts a couple distinct features. An 

important characteristic of a RTB auction is that it is commonly structured as a Vickrey or 

second-price auction (Wang, Zhang & Yuan 2017). The bids are submitted in sealed form and 

the winner of the auction pays the price of the second highest bidder. This ensures that 

participants submit bids that are equal to their own valuation as demonstrated by Milgrom 

(2004). Furthermore, most ad impressions that are being auctioned contain a floor price. This 

is the minimal price for which a publisher would allow an impression to be sold as is 

communicated to the participants. Impressions failing to deliver that value on the auction are 

often bundled and sold using reservation contracts.  

 

Figure 1  

Overview of RTB Market  

 

Note. Adapted from Internet advertising: an interplay among advertisers, online publishers, 

ad exchanges and web users, by S. Yuan et al., 2012.  
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2.2. Data 

The dataset used in this research is based on RTB data released by the Chinese DSP iPinYou 

(Liao, Peng, Liu & Shen, 2014). As one of the largest DSPs in the county, iPinYou provides 

businesses with big data and AI solutions in the context of digital marketing. In 2013, the 

company organized a global RTB algorithm contest to help improve its DSP bidding algorithm 

and stimulate scientific growth in the RTB environment (Liao et al., 2014). After the 

competition ended, the datasets were made public for further research.  

 

In total, the iPinYou dataset consists of close to twenty million impressions and the bids of 

twelve advertisers over the course of three different time periods or seasons. It is structured in 

four different logs of biddings, impressions, clicks and final conversions that each contain 

information regarding the user, the ad slot and the bidding information. An overview of the log 

data format has been provided in Table B1. However, for a more thorough description of the 

data it is recommended to consult the iPinYou competition supplement by Liao et al. (2014) 

and the research of Zhang et al. (2014).  

 

This paper selected the impression log of the data for its analysis since it contains all the 

advertisements that have been broadcasted to a web visitor. Here, the objective was to predict 

the paying price of an impression since it resembles the general valuation of the ad space. The 

price unit was denoted in RMB per CPM as is a common metric in display advertising (Wang, 

Zhang & Yuan, 2017). The variables that were used for modelling this price include: the 

timestamp, user agent, region, ad exchange, ad slot width, ad slot height, ad slot visibility and 

the ad slot floor price.  

 

For the analysis, a sub-sample of the data was used for faster calculations with limited 

information loss. The third season has been selected for sampling since it contains the most 

recent data and comprises the longest consecutive time span. From this data, 10,000 

impressions have been randomly sampled for conducting the statistical analyses and model 

evaluation. To further prepare the data, multiple preparation steps were performed. This 

included removing missing values, converting the timestamp, recoding user agent information, 

and merging the ad slot width and height to common resolutions.  
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2.3. Supervised Learning 

Forecasting the paying price in auctions is categorized as a supervised learning problem. In 

this area of machine learning, a set of independent variables is used to predict one or more 

dependent variables. Since price is a quantitative variable, a regression technique can be used 

to estimate the statistical relation. This research compares various supervised learning 

techniques for modelling paying price, which is elaborated on in the remainder of this section.  

 

2.3.1. Linear Regression  

A standard approach for modelling conventional auctions is by estimating the linear 

relationship between the variables. Linear models have a long history in statistics and are still 

widely used as of today (James, Witten, Hastie & Tibshirani, 2013). There are a great number 

of extensions and generalizations of the linear model all varying in terms of complexity and 

applicability. In this paper, a general linear regression will be set up that serves as a benchmark 

model to its extensions and machine learning techniques.  

 

Let us start by considering a linear regression model that uses one predictor variable 𝑋 for 

predicting the response variable 𝑌 linearly as formalized by James et al. (2013). This model 

can be written in the following functional form 𝑌 ≈ 𝛽0 + 𝛽1𝑋 where 𝛽0 and 𝛽1 are the model 

coefficients or parameters. These coefficients capture the linear relationship between the 

variables in the population with 𝛽0 as intercept and 𝛽1 as slope. Since this population is unlikely 

to be fully observable its parameters are usually unknown. By taking a sample with 𝑛 

observations of 𝑥 and 𝑦, and 𝑖 being equal to 1, … , 𝑛, the future value of 𝑦 can be estimated as 

𝑦̂ = 𝛽̂0 + 𝛽̂1𝑥. The hat symbol,  ,̂ is used to denote the estimated value of a parameter or the 

predicted value of the response variable.  

 

In the real-world, the predicted value 𝑦̂ often differs from the observed value 𝑦 resulting in a 

residual or error. Mathematically, for every 𝑖th observation the error 𝑒 is given by 𝑒𝑖 = 𝑦𝑖 −

𝑦̂𝑖, which let us write 𝑦 = 𝛽̂0 + 𝛽̂1𝑥 + 𝑒. The errors play a fundamental role in the linear model 

as they are used for estimating the model coefficients by optimizing a cost-function such as the 

least squared criterion. This is a method of finding coefficients subject to minimizing the 

residual sum of squares (RSS) defined as 𝑅𝑆𝑆 = ∑ 𝑒𝑖
2𝑛

𝑖=1 .  Conceptually, it attempts to fit a line 

to the data as to minimize its distance to all of the observed values.   
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The simple regression can easily be extended to a multiple regression model, which is 

expressed as 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜀 with 𝑝 predictor variables. Here, the 

population error 𝜀 is introduced to acknowledge that most real-life relationships are not 

perfectly linear. The coefficients of this model are estimated in a similar procedure as for the 

simple regression by minimizing the RSS. However, instead of fitting a line it aims to fit a 

multidimensional hyperplane to the data making it harder to visualize. 

 

2.3.2. Box-Cox Transformation 

The standard linear model relies on various statistical assumptions to reasonably depict real-

world relations and provide meaningful results (James et al., 2013). In general, these include 

adhering to a linear response-predictor relationship, a constant variance of the errors and no 

correlation among the errors. When these assumptions are not met, potential problems may 

arise that can lead to illegitimate claims (James et al., 2013). Identifying and overcoming these 

problems has been extensively researched and there are countless ways of doing so.  

 

A popular approach for addressing violations of the model assumptions is to perform a Box-

Cox transformation on the dependent variable as was introduced by Box and Cox in 1964. By 

transforming 𝑦, its distribution will be adjusted to better meet statistical properties of the linear 

model. The Box-Cox transformation specifically aims to reduce non-normality of the errors, 

but it can also help to combat heteroscedasticity and non-linearity (Box & Cox, 1964).  

Mathematically, the Box-Cox transformation of 𝑦 – given that the variable is strictly positive 

– using the power parameter 𝜆 can be expressed as 

𝑦(𝜆) = {
𝑦𝜆 − 1

𝜆
   𝑖𝑓 𝜆 ≠ 0;  

log(𝑦)    𝑖𝑓 𝜆 = 0.

 

 

What distinguishes the Box-Cox transformation from other power transformation techniques 

is that it uses a maximum-likelihood estimation for finding the optimal value for 𝜆. In statistics, 

likelihood refers to the goodness of fit of a certain distribution in belonging to the observed 

data (Friedman, Hastie & Tibshirani, 2001). This value is expressed by the likelihood function 

which consists of unknown model parameters and a given sample. Likelihood estimation aims 

to find the model parameters by maximizing the likelihood function under some assumed type 

of distribution with respect to the observed data. This yields the distribution under which a 

given sample is most probable. For the Box-Cox transformation, the maximized log-likelihood 
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function for a fixed 𝜆 is expressed as 𝐿𝑚𝑎𝑥(𝜆) =  −
1

2
𝑛 log 𝜎̂ 2(𝜆) + (𝜆 − 1) ∑ log 𝑦𝑖

𝑛
𝑖=1 . By 

plotting the maximized log-likelihood 𝐿𝑚𝑎𝑥(𝜆) against 𝜆 for a trial series of values, the optimal 

𝜆 can be found.  

 

2.3.3. Finite Mixture of Regressions 

This research uses a mixture model to control for market heterogeneity and uncover the market 

segmentation for online display advertisements. Finite mixture models use a probabilistic 

approach to detect the presence of sub-populations within a population without the need of 

observing them a priori (McLachlan & Basford, 1988). This model class outperforms the 

commonly used heuristic-based methods that are used in market segmentation since these are 

likely to contain insufficient statistical basis to uncover the true cluster nature (Tuma & Decker, 

2013). 

  

In the context of clustering, mixture models assume that a set of observations can be generated 

by a mixture of models that each represent a different sub-population or cluster (McLachlan & 

Basford, 1988). Hence, each cluster is characterized by a certain model in contrast to the 

similarity among observations that is used in traditional statistical clustering techniques. A 

mixture model relies on maximum likelihood to fit a set of models to the data and find the 

underlying group structure (McLachlan & Basford, 1988).  

 

This approach allows to obtain a probabilistic clustering of the observations by deriving the 

estimated posterior probabilities of group memberships. Hence, each observation can be related 

to multiple sub-groups in the data with a different probability. Allowing for uncertainty of 

belonging to a cluster expressed by a membership function is commonly referred to as fuzzy 

or soft clustering (Yang, 1993).  By subsequently assigning each entity to the cluster it has the 

highest probability of belonging to, a non-fuzzy or hard clustering solution can be obtained.  

 

The most common implementation of a mixture model involves fitting a mixture of Gaussian 

distributions to a multi-modal dataset (McLachlan & Basford, 1988). This will improve density 

estimation and help discover sub-populations in the data. However, when applied in a market 

segmentation analysis its solution will be mostly descriptive (Wedel & Kamakura, 2001). The 

resulting segments will consist of observations that are largely homogenous in their attributes 

such as product features or geographical information.   
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A different approach to the regular mixture model that is often used in market segmentation is 

to fit a mixture of regressions to the data (DeSarbo & Cron, 1988). Here, clusters are formed 

based on the inferred relationship between the dependent variable and a set of independent 

variables within each group (Wedel & Kamakura, 2001). This yields segments with a varying 

responsiveness of the dependent variable to different sub-groups of the independent variables. 

In addition, the method provides fitted regression models for each of the components. These 

could be used for examining the effects of features across segments or for providing estimations 

to new observations. 

 

In supervised learning, the value of a clustering solution is predominantly determined by its 

contribution to modelling the dependent variable. Since a Gaussian mixture model belongs to 

the class of unsupervised methods all variables are treated similarly with the absence of pre-

existing labels. This implicates its results cannot guarantee a relation to exist between the 

clusters and the response (Wedel & Kamakura, 2001). In contrast, a mixture of regressions 

aims at deriving clusters that are related to the responsiveness of a dependent variable. 

Therefore, its results are likely to be of greater value when integrated into predictive analysis. 

 

In general, a mixture model is characterized by two types of parameters: (i) the component 

weights or mixture proportions 𝜋𝑘 and (ii) the component specific model parameters 𝜃𝑘 such 

as the mean and variance for the Gaussian model. Together these form the parameter vector 

𝜑𝑘 of the mixture method that is defined as 𝜑𝑘 =  {𝜋𝑘 , 𝜃𝑘}. The model assumes that the data 

can be described by a mixture of 𝐾 components with 𝜋𝑘 ≥ 0 and ∑ 𝜋𝑘
𝐾
𝑘=1  = 1. Here, every 𝑘𝑡ℎ 

component has its own model that is parameterized by 𝜃𝑘. If we let 𝑌 = (𝑌1, … , 𝑌𝑝) be a 𝑝-

dimensional vector of feature variables, the density of Y can be modeled by a mixture of 𝐾 

components. The conditional distribution of the data is formalized as ℎ(𝑦 | 𝜑𝑘) =

 ∑ 𝜋𝑘𝑓𝐾
𝑘=1 (𝑦 | 𝜃𝑘), where 𝑓(𝑦 | 𝜃𝑘) refers to the 𝑝-variate density function of the data under 

component 𝑘.   

 

The parameters of the mixture model 𝜑𝑘 can be estimated using the maximum likelihood 

principle. For a random sample of N observations {𝑦1, … , 𝑦𝑁} the log-likelihood function of 

𝜑𝑘 is defined as 𝐿𝑜𝑔 𝐿 = ∑ log ℎ(𝑦𝑛, 𝜑𝑘)𝑁
𝑛=1 . In general, it is analytically impossible to derive 

the maximum likelihood estimates of 𝜑𝑘 by differentiating this function (McLachlan & 
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Basford, 1988). Therefore, the expectation maximization algorithm (EM) as introduced by 

Dempster, Laird and Rubin in 1977 is commonly used to obtain estimates of the parameters. 

This algorithm provides a generic approach for calculating the maximum-likelihood estimates 

in a variety of instances with incomplete data. Since the group membership of observations in 

the mixture model is unknown, EM provides a practical workaround for obtaining the solution. 

 

To estimate the parameters of a mixture model, EM operates as a two-step algorithm. It iterates 

between calculating the posterior probabilities of each observation for a fixed set of model 

parameters and then optimizing the model parameters given these posterior probabilities 

(McLachlan & Basford, 1988). The posterior probability 𝜏𝑖(𝑦𝑛 | 𝜑𝑖) is the probability that 

𝑦𝑛 belongs to the 𝑖𝑡ℎ component of the mixture and can be expressed using Bayes’ Theorem as 

follows 𝜏𝑖(𝑦𝑛 | 𝜑𝑖) =
𝜋𝑖𝑓(𝑦𝑛 | 𝜃𝑖)

∑ 𝜋𝑘
𝐾
𝑘=1 𝑓(𝑦𝑛 | 𝜃𝑘)

. After several iterations, the algorithm converges to a 

local maximum for a set of 𝜑̂𝑘 corresponding to the maximum likelihood solution.  

 

To extent upon a general mixture model, consider the following mixture of regressions 

ℎ(𝑦 | 𝑥, 𝜑𝑘) =  ∑ 𝜋𝑘𝑓𝐾
𝑘=1 (𝑦 | 𝑥,  𝜃𝑘). Here, 𝑦 represents a (possibly multivariate) dependent 

variable that follows the conditional density ℎ related to a vector of independent variables 𝑥. If 

𝑓 corresponds to a univariate normal density with mean 𝛽𝑘𝑥 and variance 𝜎𝑘
2 such that 𝜃𝑘 =

 (𝛽𝑘𝑥,  𝜎𝑘
2 ), the model describes a mixture of standard linear regressions (DeSarbo and Cron, 

1988). The log-likelihood for a random sample of observations is given by 𝐿𝑜𝑔 𝐿 =

 ∑ log ℎ(𝑦𝑛|𝑥𝑛,𝑁
𝑛=1 𝜑𝑘).  To obtain the maximum likelihood estimates of the model parameters 

the model relies on the same EM procedure as described earlier.   

 

A central question in every mixture model is to determine the number of components 𝐾 to 

include in the mixture. McLachlan and Rathnayake (2014) have written a paper on this subject 

where they review different methods that are commonly used to answer this question. In 

general, there are two approaches for choosing K that both rely on comparing the mixture 

solutions for different number of components. First, an information criteria that is based on 

some penalized form of the log-likelihood can be consulted such as the Bayesian Information 

Criterion (BIC).  Second, a formal hypothesis test can be performed using the likelihood ratio 

test. However, since the null distribution of the likelihood ratio test statistic does not meet the 

standard regularity conditions it may lead to biased results (McLachlan & Rathnayake, 2014).  
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2.3.4. Multinomial Logistic Regression 

The segmentation of new observations cannot be directly inferred since these are related to the 

unknown price of an impression. Therefore, a new model needs to be trained that assigns each 

testing observations to one of the derived segments. Since the variable of interest is qualitative, 

a classification model should be set-up in order to predict this outcome. There are many 

different types of classification techniques, but this paper adopts the multinomial logistic 

regression for this task. The reason for choosing this model is because it is one of the most 

common methods for linear classification and can return a probabilistic classification for new 

data points (Friedman, Hastie & Tibshirani, 2001).  

 

In its basic form, the logistic regression is used to model the probability of a binary dependent 

variable to one or more predictor variables. Here, it relies on the logistic function to prevent 

insensible predictions below zero or above one from occurring as would be the case when using 

a linear function for modelling this relation (James et al, 2013). Subsequently, maximum 

likelihood is used to derive the estimated parameters of the regression model.  

 

Mathematically, the logistic function that relates a predictor variable 𝑋 to the binary dependent 

variable 𝑌 can be expressed as 𝑃(𝑌 = 1|𝑋 = 𝑥) =
𝑒𝛽0+𝛽1𝑋

1+𝑒𝛽0+𝛽1𝑋. This yields an S-shaped curve 

to visualize the relation between 𝑋 and 𝑌, which always provides estimates of 𝑌 that fall within 

the domain [0,1] regardless of the values of 𝑋 (James et al, 2013). We can rewrite the logistic 

function to return the odds of 𝑌 as a function of 𝑋 in the following way 
𝑃(𝑌 = 1|𝑋 = 𝑥)

1−𝑃(𝑌 = 1|𝑋 = 𝑥)
=

𝑒𝛽0+𝛽1𝑋. By taking the logarithm of both sides we obtain the log-odds or logit of 𝑌, which is 

expressed as a linear function of 𝑋 given by log(
𝑃(𝑌 = 1|𝑋 = 𝑥)

1−𝑃(𝑌 = 1|𝑋 = 𝑥)
) = 𝛽0 + 𝛽1𝑋.  

 

To estimate the parameters of the logistic regression the maximum likelihood approach is used 

(James et al, 2013). For a given sample of 𝑛 observations of 𝑥 and 𝑦 with 𝑖 = 1, … , 𝑛 the log-

likelihood function can be defined as 𝐿𝑜𝑔 𝐿 =  ∏ 𝑝(𝑦𝑖 = 1|𝑥𝑖)𝑖|𝑦𝑖=1 ∏ (1 − 𝑝(𝑦𝑖′ =𝑖′|𝑦𝑖′=0

1|𝑥𝑖)). By maximizing this function, we can derive the maximum likelihood estimates for the 

model parameters. This yields values for 𝛽0̂ and  𝛽1̂ so that the sample is most likely under the 

model.  
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The logistic regression can be extended beyond the analysis of binary variables to handle the 

case of categorical variables with more than two categories (Menard, 2002). When a logistic 

regression is generalized to solve multi-class problems it is often referred to as a multinomial 

logistic regression. A common approach for setting up such a model is to nominate one value 

of the dependent variable as reference category (Menard, 2002). The probability of 

membership of all other categories is calculated relative to this baseline by defining multiple 

functions.  

 

If we consider 𝑌 to be a multinomial variable with 𝐾 classes that are related to 𝑋, the 

corresponding log-odds can be modeled as log (
𝑃(𝑌 = 1|𝑋 = 𝑥)

𝑃(𝑌=𝐾|𝑋=𝑥)
) = 𝛽1,0 + 𝛽1,1𝑋,…, 

log (
𝑃(𝑌 = 𝐾 − 1|𝑋 = 𝑥)

𝑃(𝑌=𝐾|𝑋=𝑥)
) = 𝛽𝐾−1,0 + 𝛽𝐾−1,1𝑋. Note that 𝑌 is modeled using 𝐾 − 1 equations 

and that for 𝐾 = 2 it returns to the logistic regression for a binary outcome variable. Estimating 

the parameters of a multinomial logistic regression proceeds in a similar way as for the regular 

logistic regression and can be accomplished with the maximum likelihood procedure 

(Friedman, Hastie & Tibshirani, 2001). 

 

2.3.5. K-Nearest Neighbors 

With the surge of data and computational power over the last decades, the field of machine 

learning has significantly grown. This discipline offers researchers the opportunity to combine 

elements of computer science and statistics for powerful yet flexible modelling. Its methods 

have become increasingly popular in various applications including the auction domain. Here, 

Jank and Shmueli (2010) have applied a K-nearest neighbors algorithm (KNN) that proved 

very competitive to a linear model – especially in the case of heterogeneous auctions.  

 

KNN is one of the simplest and most well-known techniques in machine learning (James et al., 

2013). In contrast to a linear model, KNN belongs to the class of non-parametric models 

meaning it requires no assumptions regarding the true shape of the regression function. Instead, 

it relies on the assumption that the response variable of a new observation is strongly related 

to the response value of the most similar objects in the dataset.  

 

For each new observation 𝑥0, KNN aims to identify the 𝐾 most similar points in the data 

represented by 𝑁0. Here, similarity is often measured using the Euclidean distance or a related 
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distance measure. To control for a different scale of the independent variables and increase 

model accuracy, the data is often first normalized before calculating the distance measure 

(Friedman, Hastie & Tibshirani, 2001). After the model has found the 𝐾 closest points, it will 

use these to form a prediction of the new observation its response. In a regression, the 

prediction of the response variable is calculated as 𝑦𝑖̂ =
1

𝐾
 ∑ 𝑦𝑖 𝑥𝑖∈𝑁0

with 𝑖 = 1, … , 𝐾. 

Intuitively, the target variable of a new observation is estimated by taking the average value of 

that variable from the K most similar points in the data.  

 

Determining 𝐾 is an imperative task because its value can influence predictions and is strongly 

related to the bias-variance trade-off. In statistics, bias is defined as the systematic error of an 

estimator and can have various problems at its root (James et al., 2013). The variance of a 

statistical method refers to the degree to which the predicted outcome changes when different 

training data is used for estimation root (James et al., 2013). For KNN, a small 𝐾 will have a 

low bias and a high variance whereas larger values for 𝐾 typically lead to a lower variance at 

the cost of a higher bias. In general, the desired value for 𝐾 will depend on the application and 

the needs of the end-user.  

 

In this research, the objective is to maximize prediction accuracy of the models. Therefore, 𝐾 

will be chosen as to improve correctness of the model. This can be accomplished by finding a 

value for 𝐾 that minimizes the mean absolute error (MAE) of the predictions, which is defined 

as 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1 . However, the reference data cannot be used for evaluating the 

model since it will lead to severe overfitting.  

 

Extracting a validation or hold-out set at the beginning of the analysis can help overcome this, 

but a more robust solution is to cross-validate the training data for calculating the MAE. Cross-

validation (CV) is a refinement of the validation approach that is based on resampling without 

replacement. A common CV method is k-fold cross-validation, which is based on randomly 

dividing the data into k equal sized groups or folds (James et al., 2013). The first fold serves as 

validation set with the remaining k – 1 groups being used for training the model. Subsequently, 

the hold-out set is used for calculating the error after which the process is repeated k times, 

each time picking a different validation set. The k-fold cross-validated error CV𝑘 that can be 
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calculated from this method is expressed as 𝐶𝑉𝑘 =
1

𝑘
∑ 𝑀𝐴𝐸𝑖

𝑘
𝑖=1 . By plotting this error against 

a range of values for 𝐾, the optimal number of neighbors can be determined.  

 

2.3.6. Artificial Neural Network 

The Artificial Neural Network (ANN) is a fundamental component of deep learning – a sub-

field of machine learning which models are inspired by the biological brain. Analogous to a 

brain, the ANN is made up of many simple processors (neurons) that operate in parallel, are 

widely connected and learn from experience (Specht, 1991). More specifically, the network 

can learn to perform a task by considering a set of examples without the need of being 

programmed with task-specific rules. This in contrast to regular machine learning algorithms 

that do require this type of pre-programming.  

 

ANNs have a proven track-record across a variety of applications. In recent years, many 

machine learning and pattern-recognition competitions have been won by extensive versions 

of the model (Schmidhuber, 2015). Furthermore, commercial neural networks are now able to 

perform with sufficient precision to be used in various organizations such as banks and 

distribution centers. One of the reasons behind ANN’s performance lies in its ability to capture 

complex patterns that less sophisticated techniques are unable to do. This might be beneficial 

in the task of grasping the complexity of bidding behavior. For example, Jank and Shmueli 

(2010) included a neural network in their model comparison for predicting the final price in 

online auctions where it ranked among the best performing methods.  

 

The neurons constituting the network are structured in different layers as is shown in the 

schematic diagram in Figure 2 (Nielsen, 2015). The number of neurons for a given layer is 

equal to 𝑛 with 𝑖 = 1, … , 𝑛 and the number of layers in the network equals 𝑘 with 𝑗 = 1, … , 𝑘. 

Consider each neuron to be an object that can process and hold information expressed by a 

numerical value known as its activation 𝑎𝑖,𝑗. The first layer of the network is called the input 

layer and it takes in the information corresponding to the dependent variables. Hence, the 

number of input neurons is equal to the number of explanatory variables.  The last layer is 

called the output layer, which provides a final prediction of the independent variable. Here, the 

number of output neurons is equal to the number of target classes in classification or equals 

one for regression tasks. All neurons in between belong to the hidden layers of the network that 
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produce most of the model’s calculations. The number of hidden layers is somewhat arbitrary 

and depends on the complexity of the data and available computational power (Nielsen, 2015).  

  

The neurons of neighboring layers are all connected to each other through channels with every 

channel containing a number known as a weight 𝑤. When the activation of a neuron is 

transmitted to the next neuron it gets multiplied by this weight. In addition, the neurons in the 

hidden layer contain a value for bias 𝑏 and some activation function 𝜎(𝑥) for processing the 

input. The bias is added to the input sum of weighted activations to control for when a neuron 

starts getting meaningfully active. Afterwards, this weighted sum together with the bias gets 

passed through the activation functions to determine the activation of the neuron. 

Mathematically, this activation can be expressed as follows 𝑎𝑖,𝑗 = 𝜎(𝑤1,𝑗−1𝑎1,𝑗−1 +

 𝑤2,𝑗−1𝑎2,𝑗−1 + ⋯ + 𝑤𝑛,𝑗−1𝑎𝑛,𝑗−1 + 𝑏𝑖,𝑗). There are different forms of the activation function, 

but most commonly used is the sigmoid function that is formalized as 𝜎(𝑥) =
1

1+𝑒−𝑥  (Nielsen, 

2015). Applying these calculations to all neurons in the network will yield the predicted value 

of a given observation.  

 

The process being described above is known as forward propagation. On its own, forward 

propagation cannot learn from the data since no training steps are involved in its sequence. To 

successfully spot underlying patterns the addition of backward propagation is needed. Starting 

at the output layer, the error is computed by subtracting the predicted output 𝑎 from the actual 

target value 𝑦(𝑥), which is formalized in the following cost function 𝐶(𝑤, 𝑏) =

1

2𝑛
∑ |𝑦(𝑥) − 𝑎|

2
where 𝑛 refers to the total number of training inputs. The magnitude and 

direction of the error are then transferred back into the network after which the weights and 

biases get adjusted to reduce the cost. 

 

A solution is derived by using the gradient descent algorithm, which is an optimization 

technique that iteratively tries to find the direction of the steepest descent in a function using 

partial derivatives (Nielsen, 2015).  To limit calculation time, the stochastic gradient descent 

technique is commonly used in ANN. Here, the data is first divided into multiple batches before 

finding the gradient descent and recalculating the weights and biases.  
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Figure 2 

Overview Neural Network Structure 

 

Note. Adapted from Neural Networks and Deep Learning, by M.A. Nielsen, 2015. 

 

2.4. Model Selection 

In 1987, Box stated: “Essentially, all models are wrong, but some are useful” (p. 424). This 

contributed to the both technical and philosophical discussion regarding the true definition of 

a model and how its usefulness should be expressed. A common approach is to try and capture 

this using a statistical performance metric. In the field of model selection, various methods 

have been formalized to compare different models’ performance for determining the most 

optimal one (Friedman, Hastie & Tibshirani, 2001).  

 

The types of performance metrics can roughly be broken down into two categories (Breiman, 

2001). First, there is the type of measures focusing on goodness-of-fit such as the Akaike 

information criterion (AIC) and the BIC. Second, there are metrics that rely on prediction 

accuracy for model validation. Examples include the root mean squared error (RMSE) and the 

mean absolute error. What measurement is more appropriate depends on the objective of 

research and the richness of data (Friedman, Hastie & Tibshirani, 2001).  

 

In this paper, both linear and machine learning techniques have been evaluated on their 

performance. However, since the machine learning models are not linear in their parameters, 

likelihood measures such as the AIC and BIC cannot be directly calculated (Friedman, Hastie 

& Tibshirani, 2001). Moreover, predictive power has been considered a central component of 

this research where data scarcity was not an issue. Therefore, it was chosen to rely on an error-

based measure for the model selection procedure.  
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The RMSE and MAE are both regularly used performance metrics in studies on model 

evaluation (Chai & Draxler, 2014). Although appearing similar, there are some distinct 

differences among the two. Most notably is that the RMSE penalizes variance in the error terms 

by giving a heavier weight to larger absolute values of the error (Chai & Draxler, 2014). In 

contrast, the MAE applies the same weight to each error regardless of its magnitude and is 

therefore not sensitive to variability in the errors.  

 

Mathematically, the error measures are defined as 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1  and 𝑀𝐴𝐸 =

1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1 . When both calculated, the result of the RMSE will always be greater or equal 

to that of the MAE. The difference between the two terms indicates how much variability is 

present among the residuals and can be used for statistical inference. Instead of choosing one 

metric over the other, Chai and Draxler (2014) recommend using a combination of measures 

to better capture the differences of model performance. For this reason, both metrics were used 

for evaluating the performance across models. 

 

Calculating the error measure for model selection should exclusively be done for a testing set. 

This prevents favoring a model that has modeled the noise of the training data known as 

overfitting (James et al., 2013). In other terms, the testing error serves as a better estimate of 

model performance in a real-world setting than the training error. Consequently, 33% of the 

data was withheld at the beginning of this research. After training the model on the remaining 

67% of the data, this testing set was used to compute the error measures of the models. 

 

3. RESULTS  

 

3.1. Linear Model 

As the first predictive model in this research a multiple regression was performed to capture 

the linear relationship in the data. More specifically, the price that was paid for an impression 

on the RTB market was modelled as a linear function of multiple variables including 

information on the user and the ad slot. An extensive overview of the regression results can be 

found in Table B2. The 𝑅2 value of 0.283 signaled that roughly one-fourth of the variance in 

the paying price has been explained by the variance of the independent variables. Here, the 
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variables with the strongest relation to the price according to their t-values were the floor price, 

the ad exchanges and the ad sizes.  

 

The diagnostics of the regression model have been presented in Figure A1. When inspecting 

these plots, multiple violations to the assumptions of the linear model could be observed. For 

example, the upper left plot showed how the residuals of the fitted values differ for the lower 

and higher prices versus those from the middle segment. This inconsistency indicates that the 

data may not adhere to a linear relationship which violates a fundamental assumption of the 

regression model (James et al., 2013). Furthermore, the Q-Q plot in the upper right plot shows 

that non-normality in the errors is likely present which contradicts another model assumption.  

 

3.2. Box-Cox Transformation 

To combat the model violations of the linear regression, a Box-Cox transformation of the 

dependent variable was performed. By calculating the log-likelihood for different values of 

lambda in de domain of minus one to one the most optimal power transformation for the linear 

model was obtained. Figure 3 displays the levels of log-likelihood for every lambda with a 

95% confidence interval of the values that have the highest likelihood. Since the value one was 

not included in this domain, a transformation was required. The optimal value for lambda 

amounts to 0.26, but since 0.25 lies within the interval – and offers a more intuitive relation – 

it was set as transformation parameter.  

 

Figure 3 

Optimal Lambda from Box-Cox Analysis 
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After finding the optimal value for lambda, a new linear model was fitted that included a power 

transformation of the dependent variable as obtained by the Box-Cox analysis. The diagnostics 

of this model have been presented in Figure A2 and showed multiple improvements in 

comparison to the first linear model. For instance, the residuals contain less bias and average 

to zero for the vast number of fitted values. Moreover, the Q-Q plot is more centered towards 

the diagonal indicating the residuals are more normally distributed. Altogether, these results 

showed the regression assumptions were better met for the Box-Cox model which signaled that 

its statistical results should be more statistically sound.  

 

The results of the Box-Cox model have been presented in Table B3. Despite the improvements 

of the regression diagnostics, the 𝑅2 of the model slightly decreased to 0.272. Hence, 

transforming the dependent variable did not lead to a better fit of the regression. When 

inspecting the regression coefficients, there are no remarkable differences in comparison to 

those of the regular regression. Although the magnitude of the coefficients evidently shrunk 

due to the transformation of the dependent variable, the t-values and direction of the 

coefficients have stayed predominantly similar.  

 

3.3. Finite Mixture of Regressions 

To address market heterogeneity, a market segmentation analysis has been performed using a 

finite mixture of regressions (FMR). By fitting a mixture of regressions to the training data, the 

component-based structure of the variables was obtained returning sub-groups with a varying 

responsiveness of the price towards the other variabels. Afterwards, the regression models 

corresponding to these segments were used to set-up a predictive model for estimating the price 

of the testing data.  

 

The number of components to include in the mixture was determined using the BIC. This is a 

common metric for comparing different mixture solutions (McLachlan & Rathnayake, 2014). 

In this paper, a negatively oriented version of the BIC was adapted meaning we aim to 

minimize this value. Since the underlying EM algorithm converges to a local maximum, it has 

been run repeatedly with different starting values to select the optimal version of each model. 

In total, every mixture of regressions has been fitted five times for 𝐾 = 1, 2, … ,8 components 

after which the best of each set of models was selected.  In Figure 4, the results of this tuning 
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analysis have been presented. Since the BIC did not vastly improve for mixtures with more 

than four components it was chosen to set 𝐾 =  4.  

 

Figure 4 

BIC for Different Number of Components of the FMR 

 

 

The final mixture model used four regressions to model the data each representing a different 

segment in the market for display advertisements. To visually assess the quality of a clustering 

solution we can inspect the rootogram of posterior class probabilities over the components 

(Leisch, 2004). A rootogram is very similar to a histogram, but its height bars are on a rooted 

scale so low counts become more visible and peaks less emphasized. If the posterior 

probabilities in a rootogram are concentrated towards 0 and 1 it means the components are 

well-separated. In Figure 5, the rootograms following from the mixture of regressions in this 

paper have been presented. This shows that segments 1 and 2 are relatively distinctive while 3 

and 4 less so. 
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Figure 5 

Rootogram of Posterior Probabilities > 1𝑒−4 per component 

 

 

An overview of the regression coefficients over the components has been provided in Table 

B4. The variability among these values confirmed that the components picked up different 

patterns in the data representing a varying responsiveness within the market segments. For 

example, the first segment modeled observations whose price was almost fully determined by 

the floor price with a few corrections for the ad exchange, size and visibility. In contrast, the 

second segment contained impressions whose price was less strongly related to the floor price, 

but more heavily to the size and region of the ad slot.  

 

To integrate the results of the finite mixture regression into a predictive model both a hard and 

soft clustering approach have been applied. Hard clustering assumes that each observation 

belongs strictly to one cluster or segment (Yang, 1993). In line with this assumption, the price 

of a testing observation was predicted by first selecting the segment it has the highest 

probability of belonging to as estimated by the classification analysis. Subsequently, the 

corresponding regression model from the finite mixture of regressions was used to predict its 

price. In contrast, a soft clustering assumes that each data point can belong to multiple segments 

with a varying degree of (un)certainty (Yang, 1993). Here, the price of a new observation was 
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predicted by multiplying the predictions of the four regression models with the estimated 

probabilities of segment membership from the classification model.  

 

3.4. Multinomial Logistic Regression 

Since the paying price of the testing data has been considered unknown, it was impossible to 

derive its group membership directly using the posterior probabilities of the mixture model. 

Therefore, a multinomial logistic regression model has been set-up to model the probabilities 

of a testing observation in belonging to each of four the segments. The model was trained by 

relating the predictor variables of the training data to the segments that were derived using the 

finite mixture of regressions. Here, the training observations were first assigned to the segment 

they had the highest probability of belonging to as expressed by the posterior probabilities. 

Next, the performance of the logistic regression model was evaluated by comparing the 

predicted classes with the actual segments in a confusion matrix as presented in Table 1. 

 

Table 1 

Confusion Matrix of Multinomial Logistic Regression 

         Reference  

  1 2 3 4 

1 1503 151 237 272 

2 44 475 378 231 

3 107 402 593 463 

4 264 402 501 677 

 

 

 

From Table 1 can be seen that the model performs particularly well at predicting the first 

segment which has a balanced accuracy of 82.3%. For all the other segments the model is a 

much poorer predictor which have respective balanced accuracies of 60.4%, 57.6% and 59.1%. 

This, however, comes as no surprise since the rootogram in Figure 5 shows that segment one 

is clearly most separable when compared to the others segments. 

 

3.5. K-Nearest Neighbors 

The first machine learning technique used in this research is the KNN model. Contrary to the 

previous models, KNN is not parameterized by a linear function but it estimates the price of an 

observation using its similarity to other data points. Since this is measured in distance, the 

Prediction 
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independent data has been normalized using the min-max transformation prior to the analysis 

to exclude scale as a factor of influence.  

 

Training the model required one significant training step, which was to determine the number 

of neighbors that had to be considered for calculating the predicted value. This has been derived 

by performing a 5-fold cross-validation on the training data and averaging the MAE for 

different numbers of neighbors across the cross-validated samples. The results of this analysis 

are presented in Figure 6 that shows the optimal value of K to be equal to nine. Hence, the 

predicted price of a testing observation is calculated by taking the average value of the nine 

most similar training observations. 

 

Figure 6 

Cross-validated Error for number of  Neighbors in KNN 

 

 

3.6. Artificial Neural Network 

For the last predictive model in this research a neural network was trained. Since this method 

can easily take a long time to calculate, region id was omitted from the set of predictors. This 

variable did not show a great contribution at the other models and its many categories would 

impose a great computational expense on the network. In addition, the ANN algorithm only 

handles numerical inputs. Therefore, the categorical data were converted to numerical variables 

using a one-hot encoding. Furthermore, a min-max transformation was applied to scale the 

predictor variables.  
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To calculate the activations of the neural network, the commonly used sigmoid function was 

adopted (Nielsen, 2015). The propagation algorithm that has been used for iteratively 

recalculating the weights was the resilient backpropagation algorithm. This algorithm was 

designed by Riedmiller and Heinrich Braun in 1992 and has increased efficiency in comparison 

to regular backpropagation.   

 

The resulting network was set-up using a series of trial and error on the training data since the 

model is too computationally expensive to cross-validate. Nodes and layers were added until 

the model would no longer improve or converge. This led to a single-layer neural network with 

8 nodes as visualized in Figure A3. 

 

3.7. Model Selection 

After having trained the models on the training data their performance was evaluated using the 

testing set. First, the price of every testing observation was predicted using the different 

models. Next, the performance measures were calculated by comparing the predictions to the 

actual price that was paid for an impression. This resulted in the following overview of 

performance metrics for the model comparison as presented in Table 2.  

 

Table 2 

RMSE and MAE of Predictive Models 

 
RMSE MAE 

Linear Regression model 54.16 41.83 

Regression model with Box-Cox transformation 56.01 39.49 

Finite Mixture of Regressions with soft clusters 53.32 38.74 

Finite Mixture of Regressions with hard clusters 62.55 40.73 

K-nearest neighbors model 54.62 40.82 

Artificial Neural Network 54.54 40.87 

 

In general, it can be concluded that the models are relatively poor at predicting the price of an 

advertisement considering that the variable has a mean of 77.2 and a standard deviation of 64.4. 

This could indicate that the independent variables in this research were not strongly related to 
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the price that was paid for an impression. Alternatively, the techniques that have been used 

might be unable to capture the appropriate patterns in the data related to pricing.  

 

Table 2 also shows that the RMSE is consequently higher than the MAE. The differences 

between these error metrics range from approximately 30% to 50% for the predictive models. 

This suggests that there is variance present in the errors as the RMSE penalizes larger absolute 

values of the error term (Chai & Draxler, 2014). The origin of this variance can be observed 

from the diagnostic plots in Figure A1 and Figure A2, which display the difference between 

the fitted vs the actual price for the regressions. These figures show that the highest absolute 

errors are strongly centered around the lower predictions and almost non-occurring for the 

higher predictions. This indicates that the extreme errors are mostly due to missing high-priced 

impressions instead of overpricing cheaper ad slots.  

 

The most promising model that was used for predicting the price of an impression was the 

finite mixture of regressions with soft clusters. It ranked highest on both performance metrics 

when compared to the other models. This could indicate that controlling for market 

heterogeneity may improve prediction accuracy of pricing models in the RTB market. 

However, since the differences in error terms are relatively small the evidence is not 

conclusive. This could potentially be further increased by training a more sophisticated 

classification algorithm to more accurately assign new observations to the derived segments.  

 

In any case, the mixture model performed at its best when using a probabilistic or soft clustering 

of the market segmentation to predict the price. Both error metrics improved for the predictions 

made with soft clusters when compared to hard clusters. This means that the price of an 

impression is better described by a mixture of segments than by a single one and the segments 

should not be interpreted as ground truths.   

 

4. CONCLUSION 

In this research, an effort has been made in modelling the paying price of an impressions in the 

real-time bidding market for display advertisements. After describing the RTB eco-system and 

introducing the dataset, multiple statistical and machine learning models were trained to predict 

the price of a digital advertisement slot. Finally, their performance was evaluated by comparing 

the error measures resulting from predicting prices for a testing set.  
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The results reveal that the models are moderately accurate in predicting the price of the testing 

data. This could be explained by two limiting factors. First, the feature data may not be strongly 

related to the price of an impression. Individual valuations of the customer could vastly differ 

over the advertisers without general trends. Moreover, it could be possible that advertisers are 

in possession of more data through data exchanges and cookie data to base their bids on which 

are not included in this research. Second, the statistical models used in this research might not 

be able to model the patterns that relate the prices to the advertisement data. If advertisers use 

sophisticated statistical techniques to determine their valuation more complex patterns in the 

data might be present. 

 

Another finding of the analysis is that there exists a systematic discrepancy between the two 

error terms that are used. The RMSE is consistently higher than the MAE, which suggests that 

variability in the errors is present. This is partly driven by the inability of the models to 

accurately detect and predict highly priced impressions. The reasons for this obstacle are likely 

similar to those that generally impede the model performance. Advertisers may use strategic 

prospecting and retargeting algorithms to determine their bids. When retargeting a customer 

using cookie data they can start aggressively bidding on the digital ad space of the user. This 

behavior can be difficult for algorithms to learn and becomes more complex if valuations 

greatly differ across advertisers.  

 

Incorporating a market segmentation to predict the price of an impression shows a slight 

improvement compared to the other pricing models. By fitting a mixture of regressions, 

multiple segments with a varying responsiveness of the price to the predictors can be derived 

that control for some degree of market heterogeneity. Combined with a classification model 

that provides a probabilistic segmentation of new observations, this method ranks as best 

performing method in this study. However, the difference in accuracy to other models is small 

and overall error rates remain an issue. Therefore, more research is needed to assess the 

competitiveness of such a stacking model in the RTB market or for different applications with 

market heterogeneity.  

 

In general, the RTB market for display advertisements shows to be a challenging environment 

to model. This makes it difficult for a publisher to obtain an accurate understanding of the value 

of its ad space to the advertising industry. Future research could try to overcome this in various 
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ways. Adding more personal data may naturally improve predictions, but this might be hard to 

come by for public use. Furthermore, incorporating a stronger advertiser oriented approach for 

modelling price may help better detect highly valued impressions. This could be accomplished 

by including click-through-rates and conversion rates as subcomponents of the prediction 

model. As a result, overall performance will likely improve and a better understanding of the 

market can be obtained.  
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Appendix A. Figures 

 

Figure A1 

Model Diagnostics Linear Model  
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Figure A2 

Model Diagnostics Linear Model with Box-Cox Transformation  
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Figure A3 

Neural Network Structure for a Single Hidden Layer with 8 Nodes 
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Appendix B. Tables 

 

Table B1  

Overview iPinYou Log Data Format 

Col # Description Example 

1 Bid_ID 5df19fc12e1ea5fd2809a630ced62725 

2 Timestamp 20131021211100500 

3 Log_Type 1 

4 iPinYou_ID D8NLsb7Wx0D 

5 User_Agent Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;  

WOW64; Trident/5.0) 

6 IP 60.28.101. 

7 Region_ID 2 

8 City_ID 2 

9 Ad_Exchange 4 

10 Domain f8febf1a31b70b3c14ef8338756254e8 

11 URL 3d8ad5f8c014bc3dc09861c37788f835 

12 Anonymous_URL null 

13 Ad_Slot_ID 9223372032560700000 

14 Ad_Slot_Width 960 

15 Ad_Slot_Height 90 

16 Ad_Slot_Visibility FirstView 

17 Ad_Slot_Format Na 

18 Ad_Slot_Floor_Price 0 

19 Creative_ID 10717 

20 Bidding_Price 294 

21 Paying_Price 20 

22 Landing_Page_URL null 

23 Advertiser_ID 2821 

24 User_Profile_ID 1,005,713,800,100,590,000,…,000 
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Table B2  

Regression Output Linear Model 

  Estimate Std. Error t-value Pr(>|t|)  

(Intercept) 24.01 11.49 2.09 0.04 * 

Ad_Slot_Floor_Price 0.58 0.02 31.01 0.00 *** 

Region_ID1 19.65 5.51 3.56 0.00 *** 

Region_ID2 7.73 6.96 1.11 0.27  

Region_ID3 11.35 5.42 2.10 0.04 * 

Region_ID15 4.14 6.37 0.65 0.52  

Region_ID27 1.79 7.76 0.23 0.82  

Region_ID40 9.75 6.03 1.62 0.11  

Region_ID55 11.56 6.96 1.66 0.10 . 

Region_ID65 8.86 6.65 1.33 0.18  

Region_ID79 19.16 6.10 3.14 0.00 ** 

Region_ID80 12.29 5.17 2.38 0.02 * 

Region_ID94 8.76 5.21 1.68 0.09 . 

Region_ID106 11.07 5.88 1.88 0.06 . 

Region_ID124 9.35 6.04 1.55 0.12  

Region_ID134 10.24 6.94 1.48 0.14  

Region_ID146 17.27 5.18 3.33 0.00 *** 

Region_ID164 8.94 5.48 1.63 0.10  

Region_ID183 3.33 5.64 0.59 0.56  

Region_ID201 12.77 6.10 2.09 0.04 * 

Region_ID216 9.47 4.52 2.09 0.04 * 

Region_ID238 6.89 6.45 1.07 0.29  

Region_ID999 0.50 5.31 0.09 0.93  

Region_ID275 10.29 7.25 1.42 0.16  

Region_ID276 10.70 5.72 1.87 0.06 . 

Region_ID308 12.17 7.66 1.59 0.11  

Region_ID333 9.63 6.11 1.58 0.12  

Ad_Exchange2 -40.38 3.12 -12.95 0.00 *** 

Ad_Exchange4 -71.35 3.67 -19.46 0.00 *** 

Ad_ExchangeOther -30.41 9.86 -3.08 0.00 ** 

Ad_Slot_VisibilityFirstView 15.44 2.38 6.49 0.00 *** 

Ad_Slot_VisibilityFourthView -7.48 4.33 -1.73 0.08 . 

Ad_Slot_VisibilitySecondView 7.09 3.81 1.86 0.06 . 

Ad_Slot_VisibilityThirdView -16.28 4.23 -3.85 0.00 *** 

coef.Ad_Size120x600 62.62 8.88 7.05 0.00 *** 

coef.Ad_Size160x600 55.50 9.04 6.14 0.00 *** 

coef.Ad_Size200x200 37.34 8.29 4.51 0.00 *** 

coef.Ad_Size250x250 31.27 8.12 3.85 0.00 *** 

coef.Ad_Size300x250 58.50 7.75 7.55 0.00 *** 
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coef.Ad_Size336x280 46.99 7.96 5.90 0.00 *** 

coef.Ad_Size468x60 46.98 10.06 4.67 0.00 *** 

coef.Ad_Size620x60 6.17 9.34 0.66 0.51  

coef.Ad_Size728x90 49.99 7.81 6.40 0.00 *** 

coef.Ad_Size950x90 34.63 9.44 3.67 0.00 *** 

coef.Ad_Size960x90 47.49 8.49 5.60 0.00 *** 

WeekdaySun -3.42 3.02 -1.14 0.26  

WeekdayMon -2.27 2.77 -0.82 0.41  

WeekdayTue 5.23 2.50 2.09 0.04 * 

WeekdayWed 5.61 3.06 1.83 0.07 . 

WeekdayThu -7.65 3.22 -2.37 0.02 * 

WeekdayFri 0.00 2.85 0.00 1.00  

DaypartEarlyMorning 11.71 4.73 2.48 0.01 * 

DaypartMorning 13.69 2.93 4.67 0.00 *** 

DaypartNoon 10.84 3.06 3.54 0.00 *** 

DaypartAfternoon 13.48 2.43 5.55 0.00 *** 

DaypartEvening 13.97 2.71 5.15 0.00 *** 

PC 3.71 6.82 0.55 0.59  

BrowserExplorer 4.04 1.64 2.46 0.01 * 

BrowserOther 9.21 2.45 3.77 0.00 *** 

BrowserQQBrowser 1.43 3.20 0.45 0.65  

BrowserSafari 12.57 6.85 1.83 0.07 . 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 54.59 on 6639 degrees of freedom 

Multiple R-squared:  0.2833, 

F-statistic: 43.73 on 60 and 6639 DF,  p-value: < 2.2e-16 
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Table B3 

Regression Output Linear Model with Box-Cox Transformation 

  Estimate Std. Error t-value Pr(>|t|)  

(Intercept) 2.34 0.17 13.94 0.00 *** 

Ad_Slot_Floor_Price 0.01 0.00 30.46 0.00 *** 

Region_ID1 0.28 0.08 3.48 0.00 *** 

Region_ID2 0.13 0.10 1.29 0.20  

Region_ID3 0.13 0.08 1.65 0.10 . 

Region_ID15 0.07 0.09 0.71 0.48  

Region_ID27 0.02 0.11 0.17 0.86  

Region_ID40 0.17 0.09 1.95 0.05 . 

Region_ID55 0.16 0.10 1.53 0.13  

Region_ID65 0.12 0.10 1.19 0.23  

Region_ID79 0.31 0.09 3.43 0.00 *** 

Region_ID80 0.16 0.08 2.14 0.03 * 

Region_ID94 0.11 0.08 1.43 0.15  

Region_ID106 0.12 0.09 1.36 0.17  

Region_ID124 0.14 0.09 1.64 0.10  

Region_ID134 0.09 0.10 0.92 0.36  

Region_ID146 0.26 0.08 3.49 0.00 *** 

Region_ID164 0.14 0.08 1.70 0.09 . 

Region_ID183 0.04 0.08 0.48 0.63  

Region_ID201 0.13 0.09 1.43 0.15  

Region_ID216 0.15 0.07 2.23 0.03 * 

Region_ID238 0.08 0.09 0.82 0.41  

Region_ID999 -0.03 0.08 -0.41 0.68  

Region_ID275 0.15 0.11 1.43 0.15  

Region_ID276 0.15 0.08 1.86 0.06 . 

Region_ID308 0.16 0.11 1.43 0.15  

Region_ID333 0.13 0.09 1.43 0.15  

Ad_Exchange2 -0.62 0.05 -13.57 0.00 *** 

Ad_Exchange4 -1.03 0.05 -19.19 0.00 *** 

Ad_ExchangeOther -0.29 0.14 -2.03 0.04 * 

Ad_Slot_VisibilityFirstView 0.25 0.03 7.19 0.00 *** 

Ad_Slot_VisibilityFourthView -0.08 0.06 -1.26 0.21  

Ad_Slot_VisibilitySecondView 0.19 0.06 3.47 0.00 *** 

Ad_Slot_VisibilityThirdView -0.19 0.06 -3.04 0.00 ** 

coef.Ad_Size120x600 0.99 0.13 7.64 0.00 *** 

coef.Ad_Size160x600 0.95 0.13 7.19 0.00 *** 

coef.Ad_Size200x200 0.71 0.12 5.91 0.00 *** 

coef.Ad_Size250x250 0.52 0.12 4.43 0.00 *** 

coef.Ad_Size300x250 1.04 0.11 9.16 0.00 *** 
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coef.Ad_Size336x280 0.83 0.12 7.13 0.00 *** 

coef.Ad_Size468x60 0.78 0.15 5.34 0.00 *** 

coef.Ad_Size620x60 0.37 0.14 2.74 0.01 ** 

coef.Ad_Size728x90 1.01 0.11 8.87 0.00 *** 

coef.Ad_Size950x90 0.71 0.14 5.12 0.00 *** 

coef.Ad_Size960x90 0.92 0.12 7.41 0.00 *** 

WeekdaySun -0.04 0.04 -1.01 0.31  

WeekdayMon -0.02 0.04 -0.47 0.64  

WeekdayTue 0.07 0.04 1.86 0.06 . 

WeekdayWed 0.06 0.04 1.40 0.16  

WeekdayThu -0.11 0.05 -2.33 0.02 * 

WeekdayFri 0.01 0.04 0.30 0.77  

DaypartEarlyMorning 0.22 0.07 3.14 0.00 ** 

DaypartMorning 0.22 0.04 5.04 0.00 *** 

DaypartNoon 0.17 0.04 3.75 0.00 *** 

DaypartAfternoon 0.21 0.04 5.82 0.00 *** 

DaypartEvening 0.21 0.04 5.41 0.00 *** 

PC 0.02 0.10 0.22 0.82  

BrowserExplorer 0.05 0.02 2.10 0.04 * 

BrowserOther 0.14 0.04 3.85 0.00 *** 

BrowserQQBrowser -0.01 0.05 -0.26 0.79  

BrowserSafari 0.18 0.10 1.80 0.07 . 

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.7962 on 6639 degrees of freedom 

Multiple R-squared:  0.2724, 

F-statistic: 41.43 on 60 and 6639 DF,  p-value: < 2.2e-16 
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Table B4 

Regression Output Finite Mixture of Regressions 

 Comp.1 Comp.2 Comp.3 Comp.4 

coef.(Intercept) 0.00 4.59 108.00 6.13 

coef.Ad_Slot_Floor_Price 1.00 0.30 0.80 0.75 

coef.Region_ID1 0.00 20.79 -1.27 1.19 

coef.Region_ID2 0.00 2.07 -8.52 3.89 

coef.Region_ID3 0.00 21.61 -0.89 -1.66 

coef.Region_ID15 0.00 -19.85 5.99 -0.04 

coef.Region_ID27 0.00 -22.73 4.61 2.91 

coef.Region_ID40 0.00 10.72 -6.11 8.01 

coef.Region_ID55 0.00 20.33 -7.78 -1.11 

coef.Region_ID65 0.00 21.89 3.17 6.48 

coef.Region_ID79 0.00 22.75 5.94 4.50 

coef.Region_ID80 0.00 13.20 6.45 1.08 

coef.Region_ID94 0.00 6.47 0.53 -1.74 

coef.Region_ID106 0.00 22.13 -9.53 -2.43 

coef.Region_ID124 0.00 9.72 1.57 0.28 

coef.Region_ID134 0.00 36.11 2.14 -0.47 

coef.Region_ID146 0.00 14.53 4.65 0.78 

coef.Region_ID164 0.00 -0.22 1.74 0.63 

coef.Region_ID183 0.00 2.14 -14.57 0.14 

coef.Region_ID201 0.00 19.39 32.93 2.34 

coef.Region_ID216 0.00 10.49 2.02 2.61 

coef.Region_ID238 0.00 13.35 -4.54 0.23 

coef.Region_ID999 0.00 0.41 -15.52 -0.70 

coef.Region_ID275 0.00 10.25 7.57 2.65 

coef.Region_ID276 0.00 11.28 -2.31 0.60 

coef.Region_ID308 0.00 9.66 3.57 -1.44 

coef.Region_ID333 0.00 -1.67 2.09 0.95 

coef.Ad_Exchange2 -26.00 -30.21 -89.36 4.93 

coef.Ad_Exchange4 -25.00 -56.71 -90.21 -4.27 

coef.Ad_ExchangeOther -26.00 -62.07 -86.68 -26.57 

coef.Ad_Slot_VisibilityFirstView 1.00 22.65 18.92 6.02 

coef.Ad_Slot_VisibilityFourthView 25.00 -56.44 143.17 22.81 

coef.Ad_Slot_VisibilitySecondView 1.00 3.81 5.82 10.30 

coef.Ad_Slot_VisibilityThirdView 11.00 15.55 0.45 13.63 

coef.Ad_Size120x600 0.00 88.03 -73.89 21.95 

coef.Ad_Size160x600 0.00 123.11 -72.79 4.02 

coef.Ad_Size200x200 0.00 96.09 -87.47 3.86 

coef.Ad_Size250x250 0.00 113.67 -76.26 -0.22 

coef.Ad_Size300x250 0.00 113.11 -61.92 4.42 
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coef.Ad_Size336x280 0.00 115.44 -52.70 5.27 

coef.Ad_Size468x60 0.00 86.86 -73.07 -2.57 

coef.Ad_Size620x60 50.00 93.00 -95.21 28.87 

coef.Ad_Size728x90 0.00 85.94 -62.36 9.54 

coef.Ad_Size950x90 50.00 69.60 -69.01 150.81 

coef.Ad_Size960x90 0.00 71.91 -77.87 2.61 

coef.WeekdaySun 0.00 -16.16 -2.50 -1.24 

coef.WeekdayMon 0.00 -16.29 -2.30 -2.65 

coef.WeekdayTue 0.00 -6.81 -2.69 -1.93 

coef.WeekdayWed 0.00 -16.42 1.87 -0.75 

coef.WeekdayThu 0.00 -27.29 9.39 -3.33 

coef.WeekdayFri 0.00 -15.26 2.99 -0.52 

coef.DaypartEarlyMorning 0.00 13.68 6.24 1.55 

coef.DaypartMorning 0.00 25.14 5.61 1.03 

coef.DaypartNoon 0.00 23.29 7.22 0.82 

coef.DaypartAfternoon 0.00 20.71 9.72 2.45 

coef.DaypartEvening 0.00 22.83 11.21 3.90 

coef.PC 0.00 5.08 4.29 1.24 

coef.BrowserExplorer 0.00 3.87 -0.88 -0.25 

coef.BrowserOther 0.00 4.81 -2.28 0.63 

coef.BrowserQQBrowser 0.00 7.21 10.59 -3.98 

coef.BrowserSafari 0.00 26.83 13.53 7.86 
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