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2. Summary

This thesis was written in combination with an internship at AstraZeneca Netherlands, Market Access
department. The primary goal was to develop a method to forecast the cost-effectiveness of the drug
dapagliflozin as the conditions determining its cost-effectiveness change. Dapagliflozin is a SGLT2
inhibitor used in treatment of diabetes type 2 treatment for patients whose blood sugar levels are
not sufficiently controlled on metformin alone. The main competitor of dapagliflozin, and the
comparator used in this study, is the drug group of sulfonylurea (SU). Dapagliflozin is associated with
weight loss and lowered rates of hypoglycemia and heart failures compared to SU. The effect on
patient’s blood sugar is similar across both treatment options. SU is a lot cheaper and currently more
widely used than dapagliflozin in the Netherlands.

AstraZeneca uses a stochastic simulation model, called the Cardiff diabetes model, to estimate the
cost-effectiveness of dapagliflozin in various European countries. Since the Cardiff model does not
offer sufficient functionality for the aims of the study, a second model was developed instead, which
approximates the incremental costs and effects of dapagliflozin treatment as a function of selected
input parameters. In order to precisely estimate the uncertainty involved in the estimates, all
statistical analyses in this study are performed from a Bayesian perspective. Incremental costs and
effects are modeled as a bivariate normal distribution, with the two means being linear functions of
the selected input parameters.

The so-called metamodel requires training data which is generated from the original model. This is
achieved by performing multiple probabilistic sensitivity analyses (PSAs) within the Cardiff model
while systematically varying the selected inputs. The results are stored together with the inputs. Four
inputs parameters are included in the analysis: prices of dapagliflozin, sulfonylurea and metformin, as
well as the yearly weight loss that dapagliflozin is associated with.

When validated against test data which was not included in the training data, the metamodel
produced approximately equal estimates to those of the Cardiff model. The weight loss parameter
had a moderate negative impact on the incremental effects and a small positive impact on the
incremental costs. Out of the investigated prices, the price of dapagliflozin had a strong positive
effect on the incremental costs. The SU price had a small but credible negative effect, while the price
of metformin had no credible impact. A forecast based on an assumed price drop after patent loss
indicates that dapagliflozin treatment will become cost-saving once the drug’s costs fall below € 360
per year per patient.

The study’s methodology makes it possible to model the development of a treatments cost-
effectiveness in the future, provided that there is information of how the prices involved will
develop. Such forecasts are of course very much dependent on and sensitive to assumptions, but
could nevertheless be a valuable add-on to health economic evaluations. A medicine may not be
cost-effective right now, but might become cost-effective in the near future, and would thus be the
most optimal long-term choice for reimbursement. The major unresolved challenge in applying the
metamodeling method lies in the need to generate a large amount of training data from the original
model. For most health economic models which are currently in use, this will require a lot of time-
intensive and error-prone work.



3. Introduction

The conditions surrounding pharmaceutical cost-effectiveness are in constant flux: prices change,
new clinical evidence regarding existing medicines becomes available and completely new medicines
are launched onto the market.

In order to facilitate the efficient allocation of the health care system’s limited resources, it is of
utmost importance that cost-effectiveness evaluations are based on correct assumptions and input
parameters. This can be challenging, especially when multiple treatments in a therapeutic area are
subject to changes in costs or other attributes. Performing a scenario analysis based on the expected
new parameters can provide information on the expected future cost-effectiveness. But each
analysis performed is limited to a single scenario. It remains difficult to understand how the changing
parameters affect the cost-effectiveness in terms of effect size, uncertainty, development over time
and potential correlations. Particularly when cost-effectiveness evaluations are performed with a
long time horizon, it may be relevant to anticipate changes in the market conditions (e.g. price
decreases) and incorporate these into the evaluation.

Forecasting the effects of changing inputs is also important in the context of so-called value-based
payments or innovative contracts [1]. These arrangements are attractive when healthcare payers and
providers cannot find an agreement through traditional fixed-pay per unit contracts. Providers are
instead paid “per value”, for example per patient successfully treated, as measured by clinical
response indicators. In order to have an appropriate basis for negotiations between providers and
payers, value-based arrangements require that the risk (clinical or financial) associated with a
medical treatment is precisely estimated and updated as soon as new relevant information becomes
available. This necessitates the incorporation of (uncertain) changes into cost-effectiveness analyses,
which is simply not possible within standard health economic models.

Neumann et al [2] expressed the need for the development of metamodeling techniques in order to
approach problems like the ones discussed above. Metamodeling can be used to estimate the impact
that certain key factors have on a medicine’s costs and benefits, and create useful forecasts as these
factors change. Within this study | seek to answer this call and provide ideas of how to apply
metamodels for health economic evaluations.

The research goal is two-fold:

e Develop an effective and widely applicable metamodeling method, which can be used to
better understand the determinants of a drug’s cost-effectiveness. The method should be
reasonably simple to execute and produce demonstrably accurate estimates.

o Apply the proposed method in a suitable case study: the diabetes drug dapagliflozin and its
cost-effectiveness in the Netherlands.

Background and methods are closely intertwined in this study, and separating them would have lead
to many repetitions and cross-references. Thus they are instead dealt with in a joint section, for the
sake of readability and conciseness. The section begins by motivating why all statistical modelling in
the study is performed under the Bayesian paradigm. It goes on to explain what metamodeling is and
which viable metamodeling methods could be identified in the literature. Section 4.3 introduces the
case of diabetes type 2 in the Netherlands, as well the Cardiff model and the clinical evidence it is
based on. The two are brought together by constructing a metamodel based on the literature
research and case study. Section 5 presents the results of the conducted analysis. This includes both
the estimated parameters of the metamodel and simulations based on these parameters. | will
investigate the impact of the prices involved in the cost-effectiveness of dapagliflozin, as well as the



impact of one selected clinical parameter. Finally, | put the key findings into context and discuss
strengths and weaknesses of the study design, as well as possible applications of my methods in
value-based pricing of pharmaceuticals.

The appendix provides the inputs used for the Cardiff model, a summary of the training data,
references as well as all R and Stan code used within this project.



4. Background and methods

4.1. A short introduction to Bayesian statistics
It is anticipated that most readers will have had limited exposure to Bayesian statistics. In order to
make sense of the methodology of this study, a minimal understanding of theoretical foundations is
needed. Thus this section quickly summarizes the most important concepts as well as differences to
the more common frequentist paradigm. Some mathematical details are necessary; they will become
clearer when they are applied to the case study in later sections. For a more sophisticated treatment
of mathematical statistics and the differences between frequentist and Bayesian inference, see
Betancourt [3].

Fundamentally, Bayesian statistics is about the quantification of belief. It assumes that a given set of
observed data is caused by some data-generating process, which cannot be observed but is
approximated through an adequate statistical model. The components of a model are the likelihood
(probability of observing the observed data, given a set of parameters and their mathematical
relationship) and the prior probability of these parameters, which is based on knowledge available
before seeing the data. This can be formally expressed through Bayes’ theorem:

_p010) =p®) _ _pGI16) *p(6)
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Where

e (is a parameter of interest (or, more commonly, a vector of multiple parameters)
e yisthe observed data

o p(0) is the prior distribution of the parameter(s)

e p(y|6) is the likelihood

e p(y) is the average likelihood

e p(B|y) is the posterior distribution

The quantity p(y) serves as a normalization constant which ensures that the posterior distribution
sums to 1 and comprises a valid probability distribution. For all but the most simple models, it will be
difficult or impossible to compute. It is thus more common to work with the unnormalized posterior
distribution (more on this at the end of the section). Bayes’ theorem can then be rewritten as:

p(6ly) x p(y|0) = p(6)

Any outcome of a Bayesian model will always, by definition, be a probabilistic distribution of
parameter values, rather than just a single point estimate and confidence interval for each
parameter. It is possible and common to summarize these distributions into a single value such as
the mean, median or mode of the distribution, or to calculate the probability that an outcome falls
within a certain interval? or is larger or smaller than a specific value, such as zero. However, these
values are merely summaries of the estimated parameter distribution, not the estimate itself.

The aforementioned concepts can be illustrated through a simple example of a model with only one
parameter. Let us imagine a newly discovered rare disease about which not much is known yet. An
analyst wants to estimate the sex-proportion p of people affected by the disease, where p = 0 and
p = 1 imply that only women or only men are affected, respectively. The likelihood of the model is

! The symbol « should be understood as “proportional to”.
2 Commonly called a credibility interval, in order to avoid confusion with frequentist confidence intervals.



y ~ binomial(1,p)

where y is the sex of a patient. There is no a priori reason to believe that either men or women are
more likely to be affected and most diseases are roughly equally distributed across the sexes. Thus
the analyst chooses a prior distribution which expresses this belief:

p ~ beta(8,8)

This distribution puts most of the probability density around 0.5 and little on the extreme ends of the
spectrum (see Figure 1, blue curve). Out of the 20 cases documented thus far, 15 were male. The
model estimates the posterior distribution for the parameter p:

Table 1: summary of poesterior distribution for the example case
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Figure 1: illustration of Bayesian inference

The expected proportion of men affected by the disease, based on the prior knowledge and the
available data, is 61%. The credibility interval (Cl) in Table 1 is a 90% highest posterior density interval
(HPDI). This is the most narrow interval possible that contains 90% of the distribution’s probability
mass. And 90% of samples drawn from this distribution will fall within the interval. Thus there is a 5%
chance a realized value from this distribution is smaller than the lower bound of the interval, and a
5% chance that it is larger than the upper bound.

We see that there is still a probability of more than 5% that the proportion is 0.5 or lower, and the
observed sample just happened to contain a lot more men by chance (Figure 1, small sample). Thus
we can say that the proportion is not credibly different from 0.5, based on a 90% credibility level.
Now suppose that instead 100 cases of the disease have been observed, 75 of whom were male.
Even though the proportion of male patients is the same as in the previous example, the estimated
parameter distribution of the parameter p is different: it has a larger mean and a smaller spread
(Figure 1, large sample). In this case, the proportion is in fact credibly higher than 0.5: there is a



strong indication that the disease does affect more men than women. This kind of result is to be
expected, since more data generally constitutes stronger evidence, and as such the prior belief has a
smaller impact on the posterior belief.

The obtained posterior distribution can be implemented into a probabilistic model and used to
generate outcome samples (or, technically incorrect but perhaps more intuitive: new
“observations”). This latter aspect is extremely important, since it means that a Bayesian model is
generative: it allows us to generate predictions which are similar to the original observations (data)
the model is based on.

Let y* represent a future occurrence of the outcome variable y. The posterior predictive distribution
is then defined as

p(y'ly) = fp(y*lﬁ) *p(6|y)de

In the context of the discussed example, this might come into play when building a patient simulation
model involving the example disease: the posterior distribution can be used to randomly generate
the sex of simulated patients. Most models contain more than one parameter, but the procedure is
analogous to the univariate case.

For most models in applied Bayesian statistics, the integrals in the above formulas above will be
difficult or impossible to solve, and thus no closed mathematical form of the posterior distribution
can be found. It is however possible to generate exact samples from the posterior distribution,
through the use of Markov chain Monte Carlo sampling [4]. When combined, these samples will
converge to an increasingly accurate representation of the posterior distribution as more samples
are generated. This is how the posterior distributions in the example (Figure 1) were obtained (even
though in this simple case, an analytical solution would have been possible).

For the modeling in this study, | use the probabilistic programming software Stan [5]. Stan estimates
the posterior distribution through the No-U-Turn Sampler (NUTS, a variant of Hamiltonian Monte
Carlo, which in turn is a variant of Markov chain Monte Carlo) as described by Hoffman and Gelman

[6].

4.1.1. Difference from frequentist statistics
In frequentist statistics, it is not possible to calculate the probability of either parameters or outcome
taking any specific value or falling within some range of values; any interpretations of this sort are
always wrong [7]. A 95% confidence interval does not contain 95% of the parameter values, since
there is only one “true” parameter value which is fixed and therefore not subject to stochastic
variation. The confidence interval also does not have a 95% chance to contain the true parameter.
Rather, if the experiment were repeated an infinitive amount of times under the same conditions,
95% of the estimated confidence intervals would contain the (still unknown) true parameter. See
Greenland et al [8] for a detailed treatment of these issues.

The correct interpretation of a confidence interval is generally not very useful for practical analyses,
and as such it is extremely common to misinterpret frequentist estimates as if they were Bayesian. In
order to avoid such inconsistencies, this study was conducted under a strict Bayesian paradigm.
Consequently, all intervals presented are credibility intervals, not confidence intervals.

4.1.2. Bayesian statistics and health economics
The use of Bayesian statistics in health economics was strongly advocated by Baio [9], who
emphasized the uncertainty quantification inherent in the Bayesian paradigm. This has obvious



advantages in health economic evaluation, where a “wrong” decision can lead to huge opportunity
costs in terms of money and human well-being. In their standard work Decision Modelling for Health
Economic Evaluation, Briggs et al argue that decision modelling is always essentially Bayesian [10]:

“In decision analysis, a probability is taken as a number indicating the likelihood of an event taking
place in the future. As such, decision analysis shares the same perspective as Bayesian statistics. This
concept of probability can be generalized to represent a strength of belief which, for a given
individual, is based on their previous knowledge and experience. This more ‘subjective’
conceptualization of probabilities is consistent with the philosophy of decision analysis, which
recognizes that decisions cannot be avoided just because data are unavailable to inform them, and
‘expert judgement’ will frequently be necessary.”

Nevertheless, most health economic analyses have been and are performed using frequentist
methods (almost always suffering from the aforementioned misinterpretations). With the recent
development of fast and simple tools like Stan and Turing [11] and an abundance of information
about their usage [5, 7], there is nothing stopping researchers from familiarizing themselves with
Bayesian methods.

4.2. Metamodelling
As indicated in the introduction, conventional health economic models have certain severe
limitations. They tend to be “black boxes”: it is not clear how a specific results comes to be and which
impact the inputs have on the result. Simply simulating different scenarios provides a rough idea at
best about the effect of inputs and does not uncover any precise mathematical relationships.
Furthermore, simulating a large number of scenarios is often unfeasible, since complex simulation
models can take many hours to sample a single scenario [12]. These are not good preconditions for a
sophisticated analysis.

A possible solution to these issues is to create another model which is trained on data generated by
the original health economic model. Here the original model is the data-generating process as
described in the previous section, and its mathematical properties can be approximated through
Bayesian inference. This second model is called a metamodel or surrogate model. Error! Reference s
ource not found. provides an illustration of the idea. A Bayesian model is generally preferable to a
frequentist one because it retains the uncertainty inherent in the original simulation, instead of
producing only a single point estimate.
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Figure 2: illustration of the metamodel concept3

In other words: assuming that a chosen health economic model provides a reasonable approximation
of costs and effects for a defined scenario, a metamodel can be utilized to extrapolate the outcomes
of the model as a function of specific inputs. Jalal et al [13] define a metamodel as “a second model
that simplifies the relationship between the inputs and outputs of a simulation model”. The purpose
of metamodels is twofold: they can be used to

e Reduce computing time and replace the original model for most purposes
e Increase transparency by uncovering the relationship of specific inputs and outputs in the
original model

The latter aspect is more important in the context of this study, but the former will be investigated as
well and briefly commented on. While metamodeling is common in fields such as biomedicine and
engineering, it is not very widespread yet in health economics. A comprehensive literature review
from 2019 found only 13 studies utilizing them [12]. The available research has been concerned with
expected value of information (EVPI) analyses [15, 16], sensitivity analysis [17], parameter calibration
[18], and simplification of a complex model [13]. Using a metamodel to forecast cost-effectiveness in
the future has, to my knowledge, not been done yet.

Degeling et al have written a valuable article on the application of metamodeling in health
technology assessment [14], which will serve as a guide for my research. They recommend a five step
process to build a metamodel:

e Identifying candidate metamodel techniques

e Simulating data sets

e Fitting metamodels

e Assessing metamodel performance (validation)
e Applying the metamodel

My methodology is based on this framework.

4.2.1. Modelling techniques
When picking a modelling method, there is generally a tradeoff between interpretability and
predictive accuracy: simple parametric models tend to be more interpretable than complex machine
learning algorithms but produce less accurate predictions, and vice versa [14]. | therefore had to

3 inspired by Jalal et al [13] and Degeling et al [14]



determine which of the three techniques provided the best compromise in that regard. In the early
stages of the study, a literature review was conducted in order to identify suitable metamodeling
techniques. Three stood out:

e Linear Model [13]
e  Gaussian Process [15, 16]
e Artificial Neural Network (ANN) [17, 18]

| discarded the ANN-approach due to the high computational burden and the “black box” nature of
neural networks, which makes them unfeasible for interpretation [19]. Non-parametric regression
using a Gaussian process was attempted and worked appropriately on synthetic test-data. However,
with actual data the computation time quickly became unmanageable. One study using a Gaussian
process for health economic metamodeling reported a computation time of 260 hours [20].
Therefore this was discarded as well. | still consider the Gaussian process a promising candidate for
health economic metamodeling, but it requires the use of approximation methods instead of full
inference. Further research on this would be valuable.

Ultimately | decided on modelling incremental cost and effects through a multivariate normal
distribution. My methodology thus expands on the linear model approach used by Jalal et al [13].
Through testing it could be determined that this model produces accurate approximations of the
original model’s estimates, despite the simplifying assumption that the mean outcomes are a linear
function of the inputs. The concrete model definition is presented in section 4.4.2.

There are two main reasons to assume a multivariate normal distribution:

e Interpretability: when given the model parameters, one can easily get an idea of what the
resulting distribution looks like and which impact the individual parameters have. Each 8 or
slope-parameter is a linear effect of the input it is assigned to, while the a or intercept
parameters are the mean outcome when all inputs are zero. The correlation coefficient p
describes the correlation between the two outcomes, incremental costs and effects.

e Practical considerations: the normal distribution is easily extended to multiple dimensions
and included in all common statistical programming libraries. Multivariate versions of other
distributions are often not readily available and have to be programmed manually, which
requires advanced knowledge of mathematical statistics. Since the method presented in this
study is supposed to be accessible to a large number of people, | decided to stick with a
normal distribution. And indeed, despite their simplicity, normal distributions work very well
for many applied problems. However, if another distribution seems more appropriate for a
problem at hand, the methodology of this study can easily be adapted to use that instead.

A disadvantage of the method is that it assumes the outcome distribution of the original simulation
model to take a multivariate Gaussian shape. The more the actual distribution deviates from this, the
higher the risk for inaccurate results becomes. For further discussion of this point see section 6.2.4.

4.3. Case study
Diabetes type 2 (TDM) is the most prevalent chronic disease in the Netherlands, with an estimated
patient count of more than one million in 2019 [21] and a yearly economic burden exceeding one
and a half billion euros [22]. The patient count is expected to grow even larger in the coming years
[23], putting more pressure on Dutch healthcare payers.

Drug manufacturers in turn have to deal with a lot of competing treatments and the need to
demonstrate the long-term value of their own product to payers. These factors make diabetes drugs



a prime candidate for innovative contracts [1]. Within this thesis, | focus on the drug dapagliflozin
[24] as a case study. Reimbursement of dapagliflozin in the Netherlands is currently restricted to
patients who do not use insulin and cannot be treated with a combination of metformin and
sulfonylurea. Patients receive dapagliflozin in combination therapy with either or both of those [25].
Both dapagliflozin and SU are considered to be equally effective at controlling the levels of glycated
hemoglobin (commonly abbreviated to hemoglobin Alc or HbAlc). Dapagliflozin is associated with a
higher quality of life and slightly improved survival for patients, due to a decreased risk of
hypoglycemic episodes and heart attacks as well a reduction in patient’s bodyweight. SU treatment is
associated with higher risks of adverse events and weight gain [26], but is currently a lot cheaper.

The price of dapagliflozin is subject to change in the near future, due to a recently decided change to
the Dutch reference pricing system [27] as well as the loss of patent protection of dapagliflozin in
2028 [28, 29], which will allow generic medicines to enter the market. It can also not be ruled out
that newly released clinical evidence will expand the knowledge about dapagliflozin’s (relative)
efficacy. All of these factors will affect the cost-effectiveness of dapagliflozin against alternative
treatment options. If we were able to forecast the potential impact of these changes on
dapagliflozin’s cost-effectiveness, healthcare payers would be able to anticipate these changes in
their decisions.

The study is focused on the following comparison:

Table 2: overview of treatment arms in the case study

Treatment arm: Control arm:
First line Metformin + dapagliflozin Metformin + SU
Second line Metformin + insulin Metformin + insulin
Third line Metformin + insulin + bolus Metformin + insulin + bolus

The cost-effectiveness of dapagliflozin in this specific comparison has been investigated for the UK
[30] and the Nordic countries [31]. However, these prior studies were mostly based on results of the
UKPDS68 study [32], while the current version of the Cardiff model also includes evidence from the
more recent DECLARE study [33], supplemented with data from UKPDS68 where necessary. A health
economic study based on this setup has been published in 2020, albeit with a slightly different
scenario focused on high-risk patients [34]. None of these studies were performed from the Dutch
perspective. All of them made use of the Cardiff type 2 diabetes model, which | will explain shortly in
the next section.

Unlike the aforementioned studies, | will not investigate any specific clinical outcomes or adverse
events in the main analysis and only model incremental costs and effects. While the metamodel
approach can be extended to include any outcome which is estimated in the base model, the
complexity and effort involved increases with any input and outcomes included, especially regarding
the generation of training data. It is therefore recommended to decide which parameters are the
most relevant and focus on those.

4.3.1. The Cardiff model
The Cardiff type 2 diabetes model provides the training data which the metamodel is trained on. It is
a microsimulation model which simulates individual patients and their clinical development over the
course of fixed half-yearly increments. Patients switch from first to second and second to third line
treatment when their HbAlc levels exceed 8% and 9%, respectively. The model is accessed through
an interface in Microsoft Excel and Visual Basic for Applications (VBA), while most of the calculations
happen in an external engine coded in C++. For a detailed explanation and validation of the Cardiff



model see McEwan et al [35]. The risk equations put into the model are based on results of the
DECLARE study [33, 34].

Like many health economic models, the Cardiff model has the option to perform a probabilistic
sensitivity analysis (PSA) where all model inputs are varied according to predefined probability
distributions. For example, one can specify to simulate a cohort of 1000 patients, 1000 times. For
each of these simulation runs, the inputs of the simulation (patients’ clinical history, treatment
effects, costs and utilities) are slightly different, since they are drawn from a probability distribution
which is parameterized by a mean and standard error for each input. The rationale behind the PSA is
that the model inputs are uncertain: they are based on limited available knowledge and evidence.
This uncertainty should be reflected in the results as well, in order to avoid overconfidence in the
results. See Briggs et al [10] for a detailed exposition.

Figure 3 shows a screenshot from the Cardiff model. Based on this simulation, the treatment is on
average less costly and more effective than the comparator, but there is a lot of uncertainty
surrounding both of these.
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Figure 3: screenshot from the Cardiff model. In health economic evaluation, quality-adjusted life years (QALYs) are a
common measure for the effectiveness of medical treatments.

4.3.2. Prices
A short note on terminology: throughout this paper, | frequently refer to drug prices, when what is
meant is strictly speaking the yearly cost per patient associated with the use of a particular drug
(which is determined by the price per drug unit), i.e. drug costs. The reason for this is to avoid the
confusion of drug costs with the total treatment costs per patient simulated by the model.

Table 3 shows the three drug prices which are included in the metamodel and their current level as
of April 2021. They will be varied when simulating training data for the metamodel (section 4.5.1).
Dapagliflozin is subject to the Dutch reference pricing system and as such, its maximum price per
pack is defined as the average price in the four reference countries [27].

Table 3: yearly drug costs

Drug Costs per day Cost per year
Dapagliflozin € 1.26 [36] € 459.85




su? €0.09 [36] €33.46
Metformin €0.05 [36] € 18.26

The yearly treatment costs put into the Cardiff model (Table 4, far right) are calculated by taking the
daily costs times the number of days in a year, plus additional pharmacy dispensing fees of € 28 per
drug [37], plus consumables in the treatment profiles where insulin is involved. Insulin costs are
calculated separately by the Cardiff model, based on the weight and weight change of the individual
simulated patient (€0.014/kg/day for insulin, €0.033/kg/day for insulin + insulin bolus [38]). Since
insulin costs are equal for both treatment arms, they are not further discussed here.

Table 4: yearly treatment costs by treatment arm (excluding insulin)

Treatment Drug costs Consumables Pharmacy Treatment
(excluding costs costs
insulin) (excluding

insulin)

Metformin + €478.11 - €56 €534.11

dapagliflozin

Metformin + SU | €51.72 - €56 € 107.72

Metformin + €18.26 €284.90 €56 €359.16

insulin

Metformin + €18.26 €1139.50 €56 €1213.76

insulin + bolus

For the prices put into the metamodel, | decided to use only the yearly drug costs themselves,
without the overhead costs. For the prices | will discuss later, the daily price can thus be recovered by
dividing by 365.25. The reason for doing this is that the drug prices are the interesting part of the
costs, while the overhead costs are constant across treatment profiles.

4.3.3. Clinical efficacy

In addition to the prices of the drugs involved in the treatment of type 2 diabetes, the impact of
changes in clinical efficacy of dapagliflozin is to investigated as well. The goal is not to anticipate any
specific scenario, but rather to provide an idea how such an anticipatory analysis can be undertaken.
The impact of dapagliflozin on body weight has been chosen as an example, since it is typically cited
as a major benefit of the drug [39].

According to clinical evidence [40], dapagliflozin leads to an average reduction in bodyweight of 3.3
kilograms per year used. Reduced bodyweight has a direct benefit to a patient’s quality of life and
also decreases the risk of adverse clinical events, most notably heart disease. It is reasonable to
assume that the impact on adverse events and survival will also affect the treatment costs. The
release of hypothetical novel trial or registry data, which shows that the effect of dapagliflozin on
bodyweight is different from what is currently known, could therefore change both the expected
costs and benefits of treatment with dapagliflozin.

*n the case of sulfonylurea, there are multiple generic drugs which are used in diabetes therapy, therefore a
weighted average is used to determine the cost. See Table 16 in the appendix for precise calculations.



4.3.4. Otherinputs to the Cardiff model

As discussed, three price parameters and one clinical parameter are varied, while the rest of the
model setup stays constant. Since cost-effectiveness analyses dealing with the dapagliflozin-SU
comparison using the Cardiff model have been performed before, with similar results to the base-
case in my analysis, | will not discuss the input choices in depth and only point out some important
details. A detailed list of all inputs used is provided in the appendix.

Means and standard errors for all inputs were sourced from the literature where possible. When
there was no standard error reported and no option to calculate it, the standard error was assumed
to be 10% of the mean. An important exception to this are the patient characteristics and clinical risk
factors: for the inputs where the standard error is known, it is small, mostly below 1% of the mean.
Setting the unknown ones to 10% resulted in a massive spread of the resulting cost-effectiveness
pairs which were not at all in line with the available literature. It also made the model very
unresponsive to changes in the treatment profiles. This was considered to be both unrealistic and
unsuitable for analysis, and | therefore set all unknown standard errors in the patient characteristics
and clinical risk factors to 1% instead of 10% of the mean.

4.4, Statistical metamodel

4.4.1. Causal structure of the case
The main outcomes of a health economic model are incremental costs and effects. Costs are directly
affected by drug prices, since they comprise parts of the treatment costs. Clinical efficacy parameters
impact the effects and, as motivated earlier, potentially also the costs associated with a treatment.

In each model run in a PSA, there are lots of factors which have an effect on the incremental costs
and effects of the respective simulation run:

e Sampled risk equations
e Sampled treatment effects
e Sampled costs, utilities and patient population

These randomized factors induce covariance between clinical costs and effects: for a simulation run
where the treatment leads to far fewer adverse events relative to the comparator, incremental costs
will be low and QALYs high, and vice versa (negative correlation between costs and effects). The
reverse can be reasonable as well: for simulation runs where patients in the treatment group live
much longer and enjoy more QALYs, costs will also be higher (positive correlation). These are just
two examples of correlation effects; many more are imaginable. It is thus very important to enable
the model to capture and reproduce this correlation between costs and effects. Since the
correlation-inducing factors are not included in the training data, they are treated as unobserved
variables (U).

This causal structure of an analysis can be represented through a directed acyclical graph (DAG) [7].
The DAG is important because it helps us decide how to interpret the model’s parameters. A model
can only report statistical associations. If we are investigating some association between two
variables A and B, the model cannot determine whether A causes B, B causes A, A and B are both
caused by some third variable C, or a combination of those. The causal interpretation depends on
domain knowledge outside of the model, which can be expressed through the DAG. Causal
interpretations within this study are conditional on the DAG and should be understood in the
following manner:

A has an effect of 8 on B, assuming that the DAG is correct



The DAG for the case study is shown in Figure 4 and Table 5. P and W are experimentally controlled;
therefore they are not caused by anything and the association they have with their respective
outcomes can be interpreted as a causal effect. While U has a causal effect on both outcomes, it does
not affect any of the exposures and is thus not a confounder with respect to E and C. The parameters
of E and C are unbiased and represent full causal effects. The correlation parameter of E and C has no
causal interpretation, it is purely a measure of correlation. E does not cause C and vice versa; they
are both caused by the unobserved variables U as well the exposures P and W.

®

u
W E
Figure 4: Directed acyclical graph (DAG) illustrating the causal structure of the case
Table 5: Legend of DAG variables
Variable | Description Type
C Incremental costs Outcome
E Incremental effects Outcome
P Drug prices Exposure
W Weight change in dapagliflozin patients Exposure
V) Unobserved variables Affect the outcomes but not the
exposures

4.4.2. Model definition (likelihood)
A multivariate normal distribution is parameterized by a vector of means and a covariance matrix,
which is in turn parameterized by a vector of standard deviations and a correlation matrix. The
following model includes two outcomes, incremental costs and effects, and thus has a bivariate
normal distribution as its outcome. In line with the DAG presented in the previous section, the mean
effects are a (linear) function of the weight change parameter, while the mean costs are a linear
function of the weight change parameter and the drug prices. The method is a generalization of
ordinary linear regression to multiple outcomes.

E, o HE,i
(Ci> ~ Multivariate Normal <(Hc,i) ’S>
Upi = ag + Pwg*xW;

3
Hei = ac+ Pwe* Wi+ Eﬁpj * Pyj
j=1
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Table 6: legend of model variables and parameters
Name in DAG and equations Name in code Description
Variables E effects Incremental
(data) effects
C costs Incremental
costs
w weight Weight change
parameter
Paapagiifiozins Psuifonyturear Pmetformin | P_dapa, p_SU, Drug prices
p_met
Parameters ag, Q¢ alphak, alphaC Intercepts
BwE betaE_weight Effect of weight
change on
incremental
effects
Bwe betaC_weight Effect of weight
change on
incremental
costs
Baapagiifiozin: Bsuifonyurear Bmetformin | betaC_dapa, Effects of prices
betaC_SU, on incremental
betaC_met costs
Og, Oc sigma[1], sigma(2] | Standard
deviations
R Rho Correlation
matrix
Transformed Ug, Uc muE, muC Means
parameters® p - Correlation
coefficient
S - Covariance
matrix

The mathematical model definition comprises the likelihood of the Bayesian model (see section 4.1).
Each of the parameters is assigned a prior distribution. Bayesian inference is about estimating the
joint distribution of parameter values that is most consistent with the prior distributions, the
likelihood and the observed data. The specific prior distributions are discussed in section 4.6.

4.4.3. Technical implementation
The data processing and model specifications are done in R. Model and data input are then passed to
Stan via the RStan package [41]. Stan will produce a distribution of samples for each parameter in the
defined surrogate model; all of these sample distributions combined comprise the posterior
distribution. The sampled parameters can be used to simulate new cost-effectiveness pairs,

5 Transformed parameters are a deterministic implication of other parameters. Therefore they do not have a
prior distribution.



dependent on the defined inputs for costs and clinical affects. Processing and visualization of the
obtained samples happen again in R.

As recommended in the Stan User’s Guide, the data are standardized before the parameters are
estimated [42]. The posterior distribution therefore includes both standardized and unstandardized
parameters. The primary reason for doing this is that it that even though the standardized
parameters are not used for any of the further analyses, they are helpful for interpretation.
Additionally, it makes the Stan program run faster.

Since the correlation coefficient p is invariant to scale, it can be ignored when rescaling the other
parameters. The two mean equations in the previous sections are of the form

yi=a+f*x;+e
Where y is the outcome, x is the predictor and e is the stochastic deviation from the mean:
e ~normal(0,0)

For brevity | will use this generic form instead of the full form of the equations. It can be transformed
by inserting the respective outcomes, predictors and parameters. The standardized value of any
observed outcome y; is defined as

yi—y
sd(y)

The sample mean y and standard deviation sd(y) are calculated as follows:

1 n
y= NZ Vi
i=1
1
1% 2
sd(y) = <ﬁ2(yi —y)2>
i=1

The calculations for the predictor x are analogous. Since the data are standardized, the parameters
are estimated on the standardized scale as well, and the regression equation turns to

Zy(yi) =

Zy(yi) =a+ ,8, * zx(xi) +e'

The unstandardized parameters are recovered in the following manner:

X

@=sd(y) (a_ﬁ’sd(x))-l_y

_sd(y)
p=8 sd (x)
o =sd(y)d’

For a derivation of these calculations see the Stan User’s guide [42].



4.5.Simulating data sets
This section deals with the creation of adequate training data which the metamodel can be trained
on. As explained earlier, the Cardiff model has the option to perform a probabilistic sensitivity
analysis (PSA). In order to determine the impact that the input parameters have, they have to be
varied and the results stored together with the input values used. The basic workflow looks like this:

e Randomize parameters
e Run health economic model
e Store results together with inputs used

The first step is to randomize the input values put into the original model. Most parametersin a
model have no logical boundaries: a price for instance, can range from 0 to infinity. Thus we have to
decide on a range for each input which constraints the simulation to meaningful values.
Furthermore, in order to produce useful training data, it has to be ensured that each region in the
parameter space defined by these boundaries is adequately represented in the simulation.

If the model is directly coded in a high-level programming language like Python or R, it is usually easy
to define a loop which runs the model many times with randomized parameters and store the results
together with the inputs used for each simulation run. In that case, for each input a random value
within the defined range is drawn for each simulation run in the loop, independently of the other
inputs. Given enough runs, this is guaranteed to cover the entire parameter space well. Figure 5
(right) shows an example for two generic parameters that are varied between 0 and 1, 2000 times.

However, if the model is accessed through a visual interface (e.g. spreadsheet software like Microsoft
Excel or a dashboard of some sort), the process is more challenging and can usually not be
automated. We have to manually change the input parameters and store the results for each
simulation. Doing this for thousands of times is obviously not feasible. Instead, a limited number of
input scenarios has to be defined; then the model is run multiple times for each of these. In order to
minimize the time spent on this, we need to reach an accurate representation of the model with as
few experiments as possible. Degeling et al [12] recommend 10 experiments per input parameter
involved, which leads to 20 experiments for the two-parameter example. The actual case study
includes more parameters and experiments (see next section).

Simply sampling random values within the parameter ranges is not a good option anymore, since it is
inevitable that certain regions of the parameter space will be underexplored while others will be
overrepresented and therefore redundant. The larger the number of dimensions (parameters), the
more severe this problem becomes. See Figure 5, left.
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Figure 5: 20 and 2000 parameter combinations, obtained through random sampling using uniform distributions

The input values thus have to varied in a manner which covers the parameter space as well as
possible, given the limited number of experiments. A useful method to achieve this is Latin
Hypercube Sampling (LHS) [43]. The LHS package for the R language provides an interface. LHS
requires the user to define a number of N experiments (combinations of parameter values) and a
range for each parameter, within which the parameter will be varied. The algorithm then returns N
combinations of all parameters. In the aggregate, these parameter combinations cover the
parameter space as well as possible, given the number of experiments. Figure 6 shows 20 random
samples for two parameters obtained through LHS.
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Figure 6: 20 parameter combinations obtained through LHS sampling

The method can be extended to more than two dimensions (parameters). For three dimensions we
would have a cube instead of a square, and for more dimensions a hypercube (multidimensional



generalization of a cube). This is where the name of the method is derived from. Dimensions higher
than two are difficult to visualize, but work analogously to the two-dimensional example.

4.5.1. Application to the case study
Four input parameters and thus four dimensions are involved in the analysis:

e Annual price of dapagliflozin

e Annual price of sulfonylurea (SU)

e Annual price of metformin

e Annual weight change associated with dapagliflozin

For the prices, | defined the range to be between 0 and the current price times 2. Even if substantial
cost increases seem unlikely in the current situation, the model should nevertheless be able to
provide meaningful approximations for situations with higher prices. The clinical parameter (weight
change of patients receiving dapagliflozin) was varied between 0 and the currently estimated mean
value times 2.

In line with the recommendations by Degeling et al, | used 40 experiments, so 40 different input
combinations (10 per parameter involved). For each experiment | simulated 250 cohorts of 1000
patients from the Cardiff model, resulting in a total of 10000 observations. The appendix includes a
detailed list of the input parameters used, as well as a plot of the obtained training data.

4.6. Priors
The prior parameters are unstandardized according to the formulas introduced in section 4.4.3,
which can only happen after the data is collected. This is why the priors are discussed here and not in
the model definition section (4.4.2). The following priors (on the standardized scale) were chosen for
the model parameters:

ag ~ Normal(0,0.5)
ac ~ Normal(0,0.5)
Bwe ~ Normal(0,0.5)
Bwc ~ Normal(0,0.5)
ﬁpj ~ Normal(0,0.5)
og ~ Exponential(1)
oc ~ Exponential(1)
R ~ LKJCorr(2)

Since the data set used is large relative to the model (10000 observations versus 10 parameters), the
Bayesian inference is highly insensitive to the choice of prior distributions (see the example in section
4.1). Nevertheless, it is considered good practice to set sensible prior distributions which assign more
probability mass to more reasonable parameter values, and less to extreme and unrealistic ones [7].
Thus, the prior distributions for all parameters are mildly informative, which means that they are
skeptical of extreme and unrealistic values. For instance, it seems unlikely that an increase of one
standard deviation in the price of metformin leads to a change of more than one standard deviation
in the incremental treatment costs, in either direction. The prior distribution for the metformin -
parameter expresses this belief.



The slightly exotic “LKJCorr” distribution (proposed by Lewandowski et al [44]) deserves a short
explanation: it serves as a prior for the correlation matrix R, parameterized by a set of correlation
coefficients. For the given model, there are two outcomes whose correlation is to be estimated, and
therefore is only one coefficient p. For values higher than 1, the distribution puts more probability
mass on small correlations near 0, and vice versa. LKJCorr(2) is thus a mildly informative prior in
favor of smaller correlations.

Figure 7 visualizes the prior distribution of the slope parameters. This plot by itself is not very
interesting, but it allows to directly compare the prior distribution to the posterior distribution in
Figure 9.

betaC_dapa_std-

betaC_SU_std -

betaC_met_std-

betaE_weight_std -

betaC_weight_std -

Figure 7: standardized prior distribution of beta-parameters.

Using the model definition and the prior parameters, we can simulate outcomes. This is helpful to
determine whether the priors are sensible: the simulated values should focus on areas which are
deemed to be realistic based on prior knowledge, but also not totally exclude extreme outcomes.
Figure 8 shows 4000 simulated cost-effectiveness pairs based on the unstandardized prior
parameters. Because the parameters are unstandardized using the collected data, the alpha
parameters are centered around the sample mean of the simulated data. The parameters are
however not conditioned on the data yet, they are random draws from the prior distributions.
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Figure 8: prior predictive distribution

Again, Figure 8 should be compared to the posterior predictive distribution in Figure 10.

5. Results

5.1. Parameter estimates
As motivated earlier, one of the motivations for building a metamodel is to uncover the precise
impact that individual inputs in the original model have on the results. One can get an idea about this
by investigating the regression coefficient estimates of the model (see model definition).

Table 7 and Table 8 summarize the unstandardized and standardized estimates, respectively. They
are summarized in terms of mean, standard deviation and 90% credibility interval. All these reported
values are merely descriptive statistics summarizing the distribution of values per coefficient,
intended to ease interpretation. When simulating new observations from the metamodel, all of the
coefficient samples are used. The correlation between the two outcomes, incremental costs and
effects, is reliably negative.

Unstandardized coefficients are always sensitive to scale, which can make them difficult to interpret
if they relate to variables of different magnitude. This becomes obvious when investigating the
coefficients for the prices of dapagliflozin and the comparator, SU. Since the price of dapagliflozin is
generally much higher, the coefficient will be smaller relative to the price, compared to SU. This is
why the coefficient of SU has a higher absolute value. When investigating the standardized
coefficients (Figure 9) it is immediately obvious that the dapagliflozin price has a much larger impact
on the incremental costs.

Table 7: unstandardized joint posterior distribution of all parameters

Coefficient Mean Standard HPDI-5% HPDI -95%
deviation bound bound

alphaC -1233.02 91.90 -1383.94 -1082.27

betaC_dapa 4.55 0.09 4.39 4.70

betaC_SU -6.51 2.19 -10.09 -2.90



betaC_met 1.75 2.21 -1.83 5.38

alphak 0.51 0.01 0.50 0.53
betaE_weight -0.03 0.00 -0.03 -0.03
betaC_weight 20.06 12.77 -1.02 41.06
sigma[1] 0.51 0.00 0.50 0.51
sigma[2] 2389.32 16.72 2361.58 2416.78
Rho -0.14 0.01 -0.15 -0.12

Table 8: standardized joint posterior distribution of all parameters

Coefficient Mean Standard HPDI - 5% HPDI -95%
deviation bound bound
alphaC_std 0.00 0.01 -0.01 0.01
betaC_dapa_std @ 0.45 0.01 0.43 0.46
betaC_SU_std -0.03 0.01 -0.04 -0.01
betaC_met_std 0.01 0.01 -0.01 0.02
alphaE_std 0.00 0.01 -0.02 0.02
betaE_weight_st | -0.11 0.01 -0.13 -0.09
d
betaC_weight_st | 0.01 0.01 0.00 0.03
d
sigma_std[1] 0.99 0.01 0.98 1.01
sigma_std[2] 0.89 0.01 0.88 0.90
Rho -0.14 0.01 -0.15 -0.12

We can investigate the standardized estimates visually, in order to compare the relative impact that
each parameter has. Figure 9 illustrates the posterior density of the standardized beta-parameters,
with the credibility interval indicated in light blue. The price of dapagliflozin has by far the strongest
impact on the resulting treatment costs, while the impact of the other two prices is small. The price
of SU has a small but credible negative effect on the incremental costs, as is to be expected. The
price effect of metformin is not credibly different from 0.

The weight change parameter has a credible negative impact on the incremental effects and a very
small positive impact on costs. The weight change increment is expressed in kilogram per year, and
weight loss is associated with utility gain, while weight gain is associated with utility loss. Since
dapagliflozin leads to a reduction in bodyweight, the weight increment is negative, leading to a
positive utility increment when multiplied with the negative parameter. The mean unstandardized



effect of weight change is -0.03 QALYs per kg/year. This means that an increase of the mean weight
loss per year of one kilogram leads to an increase in incremental QALYs of 0.03.
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Figure 9: standardized posterior distribution of beta-parameters

5.2. Posterior predictive simulation and model validation
After the metamodel has been trained, the predictions it makes can be compared to output samples
from the original model which the surrogate has not been trained on (Figure 10). For demonstration,
10000 new samples are drawn from the Cardiff as well as from the surrogate model and visually
compared. Figure 10 shows the draws from the Cardiff model on the left and those from the
metamodel on the right. Lighter areas indicate higher density. The inputs used represent the Dutch
situation as of April 2021 (see Table 9).

Table 9: Input values used for validation of the metamodel's performance

Input Value
Price dapagliflozin 459.85€
Price metformin 18.26€
Price sulfonylurea 33.46€

Effect of dapagliflozin on patients’ bodyweight | -3.3 kg / year
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Figure 10: comparison of the metamodel’s predictions with a new dataset obtained from the Cardiff model, which the
metamodel has not been trained on

Table 10: mean predictions by the Cardiff model and the metamodel

Mean Mean Incremental costs | Incremental
incremental costs | incremental - standard effects —
effects deviation standard
deviation
Cardiff model 694.52 0.60 2655.10 0.68
Metamodel 645.27 0.61 2414.53 0.51

Table 10 compares the predictions made by the Cardiff model with those of the metamodel. The
metamodel predicts slightly lower mean incremental costs. Furthermore, it underestimates the
uncertainty of predicted costs and effects compared to the original model. The two results are
certainly not identical. However, this is not necessarily a problem: the goal of a metamodel is not to

reconstruct the original model, but rather to provide an approximation which is good enough to
answer all questions of interest. In the context of the study, the two main questions are::

e What are the expected incremental costs caused and QALYs gained by a patient starting
dapagliflozin treatment?
e What is the probability that the treatment is cost-saving and/or cost-effective?

The first question is adequately answered by the fact that the metamodel and the Cardiff model
predict near identical mean values. We can investigate question 2 by looking at the cost-
effectiveness acceptability curve (CEAC), shown in Figure 11. The curve for the predictions of the
Cardiff model is indicated in black, and that for the metamodel in blue. | would like to draw special
attention to two points in the chart:

e X =0, which shows the probability that the treatment is cost-saving




e X =20000, which shows the probability that the treatment is cost-effective, given the
customary ICER-threshold of 20000€ per incremental QALY

1.00

0.75

0.25

Probability cost-effectiveness

0.00

0 10000 20000 30000 40000 50000
Cost-effectiveness threshold

— Cardiff model — Metamodel

Figure 11: cost-effectiveness acceptability curve (CEAC) for the metamodel (blue) and the Cardiff model (black)

The curves are almost identical, which indicates that the metamodel captures the behavior of the
original model well. Thus, the minor differences in the estimates have no distinct impact on the
probability that dapagliflozin treatment is cost-saving or cost-effective at any threshold. The Cardiff
model and metamodel are interchangeable when it comes to decisions based on estimated costs and
effects.

5.3. Model application
In the previous section, one simulation of 10000 cost-effectiveness pairs was performed, using a
single set of input parameters. The following analyses are of the same nature, but instead of only one
simulation, a large number of different simulations is performed with different input values.

5.3.1. Impact of changes in drug prices and effects

53.1.1 Prices
In the dapagliflozin case study, one of the main interests is what the consequences of price changes
are on the treatment’s costs and cost-effectiveness. To investigate the impact of the dapagliflozin
price in isolation, a grid is defined, with evenly spaces input values from € 0 to € 1000. The other
input parameters are kept constant at the level defined in Table 9.

Table 11: illustration of input grid used for price variations

Simulation 1 Simulation 2 | Simulation3 | ... | Simulation Simulation

999 1000
Price €1.00 €2.00 €3.00 .. | €999.00 € 1000.00
dapagliflozin
Price 18.26€ 18.26€ 18.26€ .. | 18.26€ 18.26€

metformin



Price 33.46€ 33.46€ 33.46€ . | 33.46€ 33.46€
sulfonylurea

Effect of -3.3kg/year |-3.3kg/year -3.3kg/year .. | -3.3kg/year | -3.3kg/year
dapagliflozin
on patients’
bodyweight

For each of these input combinations, 10000 samples are drawn and summarized in terms of mean,
50% credibility interval and 90% credibility interval (Figure 12). Due to stochastic variance in the
simulations, the graphs are slightly wiggly. As is to be expected, the price of dapagliflozin has a strong
positive impact on the incremental costs of the dapagliflozin treatment arm. Figure 12 shows the
predictive distribution of incremental costs at each value of the price grid. The current price of
459.85€ is indicated by the vertical dashed line.
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Figure 12: predictive cost distribution for different dapagliflozin prices

Furthermore we can calculate the probability that the treatment is cost-effective and cost-saving at
each value of the defined input-grid (Figure 13). The impact on the treatment’s cost-effectiveness at
a threshold of € 20000 per QALY is small: even at a yearly price of € 1000, dapagliflozin would still
have a chance 92% to be cost-effective. This probability would drop if the price was further
increased, but such large price increases are unrealistic. The price does have a strong impact on the



probability that the treatment is cost-saving. In order for it to be cost-saving on average, the
dapagliflozin price would need to fall below € 360 per year.

cost-effective
1.00

cost-saving

Probability

0.00

0 250 500 750 1000
Price dapagliflozin

Figure 13: probability that dapagliflozin is cost-effective and cost-saving at different price levels

Analogous plots could be created for the other price parameters involved. However, as can be seen
from the parameter distributions in Figure 9, their impact on the incremental costs is small and the
mean lines and credibility intervals would be approximately horizontal. Therefore they are omitted
for the sake of brevity.

53.1.2. Clinical effects
According to the model definition, the weight change parameter is assumed to affect the
incremental effects as well as the incremental costs. Similarly to the previous section, | defined an
evenly spaced grid of 1000 values from -6.6 (double the effect that is currently known) and 0
(dapagliflozin has no effect on bodyweight), while keeping the other inputs constant.

From the parameter estimates in section 5.1 we know that the weight effect has virtually no impact
on the incremental costs, which is why the graph regarding costs (Figure 14, top) is almost horizontal.
More surprisingly, the impact on quality of life is fairly small as well: if the yearly weight loss
associated with dapagliflozin were double of what is currently known, the incremental QALYs would
only be 0.1 higher than they are now. If it had no effect on bodyweight at all, dapagliflozin would still
have chance of more than 99% to be more effective than SU. This is surprising and counter-intuitive,
since according to earlier research [30, 31], weight loss is one of the main drivers of improved quality
of life in dapagliflozin patients. According to the predictions of the Cardiff model, this is not the case.
As such, the clinical parameter investigated in this study has a negligible effect on the probability of
the treatment being cost-effective or cost-saving (Figure 15). The issue is further discussed in section
6.1.2.
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Figure 14: predictive distribution of incremental costs and effects for different values of the weight increment associated
with dapagliflozin treatment
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5.3.2. Timeline

The prices in the reference countries in the near future are known [45-47] and can be used to
anticipate the price of dapagliflozin in the Netherlands (see Table 12, until 2027). Additionally,
dapagliflozin’s patent was filed in 2008 and will therefore expire in 2028 [29], which will allow
generics to enter the market. Unfortunately, the literature provides little information regarding the
price development in European countries for drugs which lose their patent protection. In a
comprehensive literature review from 2018, Vondeling et al [48] found that while prices generally
tend to drop after patent loss, the estimated amount varies a lot both by country and by
investigating study. The price development of dapagliflozin is therefore highly speculative. Based on
internal forecasts at AstraZeneca, the following price development scheme was assumed. It assumes
a sharp initial price drop after patent loss, which then slows down over the course of five years
(column 4 in Table 12).

The patents of metformin and the commonly used sulfonylurea have expired a long time ago [49],
and therefore no significant price changes are to expected in the coming years. As previously
discussed, small price changes of both drugs have a negligible impact on the incremental costs of
dapagliflozin treatment. Thus the prices of both are assumed to stay constant.

Table 12: assumed price development of dapagliflozin

date price_dapa price_met price_SU Price drop due to
patent loss,
relative to
previous year
1-apr-21 € 487.85 €18.26 €33.46 -
1-okt-21 €527.18 €18.26 €33.46 -
1-apr-22 €527.18 €18.26 €33.46 -
1-okt-22 €527.18 €18.26 €33.46 -
1-apr-23 €522.31 €18.26 €33.46 -
1-okt-23 €522.31 €18.26 €33.46 -
1-apr-24 €517.44 €18.26 €33.46 -
1-okt-24 €517.44 €18.26 €33.46 -
1-apr-25 €517.44 €18.26 €33.46 -
1-okt-25 €517.44 €18.26 €33.46 -
1-apr-26 €517.44 €18.26 €33.46 -
1-okt-26 €517.44 €18.26 €33.46 -
1-apr-27 €517.44 €18.26 €33.46 -
1-okt-27 €517.44 €18.26 €33.46 -
1-apr-28 € 258.72 €18.26 €33.46 -50%
1-okt-28 €129.36 €18.26 €33.46 -50%
1-apr-29 € 109.95 €18.26 €33.46 -15%
1-okt-29 €101.16 €18.26 €33.46 -8%
1-apr-30 €96.10 €18.26 €33.46 -5%
1-okt-30 €91.30 €18.26 €33.46 -5%
1-apr-31 €86.73 €18.26 €33.46 -5%
1-okt-31 €84.13 €18.26 €33.46 -3%
1-apr-32 €81.61 €18.26 €33.46 -3%
1-okt-32 €79.16 €18.26 €33.46 -3%

In order to analyze which impact this price development will have on the estimated costs in the
coming years, the methodology is analogous to the previous sections. For each point in time, 10000



cost-effectiveness pairs are simulated and then summarized in terms of mean, 50% credibility
interval and 90% credibility interval (Figure 16
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). The minor price changes up until 2027 have only a negligible impact: the expected incremental
costs hover around € 1100 and the chance of the treatment being cost-saving is approximately 30%.
After the loss of exclusivity, the costs associated with the treatment decline, culminating in mean
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Figure 16: distribution of incremental costs as time passes
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Figure 17: probability that dapagliflozin is cost-saving as time passes

As we saw in the previous section, dapagliflozin’s price has very little impact on the treatment’s cost-
effectiveness. Versions of the above plots for cost-effectiveness are therefore not shown.

Obviously the forecasts are highly dependent on the assumptions made about the price
development. However, once more concrete information becomes available, it can very easily be
incorporated in the analysis. The price forecasts are not part of the metamodel, but are simply
passed to the model as inputs for the simulation. Thus the same model can be used for different
price developments.

5.4. Computation/running time
As indicated in the methods section, one of the advantages of a metamodel is the greatly increased
computation speed compared to the original model. Simulating the validation dataset from the
Cardiff model (10000 observations, Figure 10, left) took roughly one hour. The metamodel took less
than five seconds to simulate and graph the 10000 observations on the left. The metamodel thus
makes it possible to simulate outcomes for arbitrary input values in a fraction of the time it takes the
original model. Of course this comes at the expense of being limited to the inputs that the surrogate
has been trained on, while the original model allows for adjustment of all input factors.

The further simulations in section 5.3.1 took between one and five minutes each. The simulations are
of the same type as the one illustrated in Figure 10, but then applied iteratively over the defined grid
of different input values. This means that for Figure 12, 10000 cost-effectiveness pairs were
simulated 1000 times, resulting in a total of 10 million simulated pairs.

6. Discussion

After presenting the insights that can be produced through the use of a statistical metamodel, |
would like to critically discuss how these results can be used, as well as the trade-off between the
additional value and additional workload associated with the creation of a metamodel.



6.1. Applications

6.1.1. Incorporation of price-changes into health economic evaluations
In section 5.3.2 | forecasted the development of dapagliflozin’s incremental costs compared to SU as
the price decreases over time. According to the estimates, dapagliflozin is cost-effective with a very
high probability, even if the price were much higher that it is now. Price drops therefore hardly affect
the probability of cost-effectiveness. | thus focused on the probability that the treatment is cost-
saving. An equivalent analysis can be performed for cost-effectiveness (it would just not be very
interesting in the context of the case study).

Such a forecast could be included in health technology appraisal submissions and their evaluation by
the respective authorities. A drug might not be cost-effective or cost-saving yet, but may be in the
near future with a high probability. In that case the drug should be reimbursed right away, so that
when it becomes cost-effective, it is already established on the market. Not incorporating a forecast
of this sort will lead to a time-lag between market changes and efficient reimbursement: a formerly
not cost-effective drug may become cost-effective, but is only reimbursed years later or not at all,
because the decision-maker’s policy is based on old, outdated cost-effectiveness evaluation.

An obvious implication of such a procedure is that drugs which are closer to patent expiry have a
higher chance of reimbursement. The incentives in pharmaceutical lifecycle management would thus
be affected: under usual circumstances, a manufacturer wants to introduce a drug as quickly as
possible, in order to sell the drug under patent protection [50]. However, for drugs whose cost-
effectiveness is doubtful, the manufacturer might delay the market entry on purpose, in order to
have a stronger claim on cost-effectiveness in the future (as the loss of exclusivity and anticipated
price drop will be closer).

We see that the incorporation of pricing forecasts has potential benefits, but might also lead to
perverse incentives and manufacturers withholding viable drugs from the market. How this will play
out in reality cannot be answered from this study alone, and further research is necessary.

6.1.2. Incorporation of new clinical studies
Compared to drug prices, the incorporation of clinical data is not as straightforward: any published
study will provide information not only about a specific input that is included in the metamodel (e.g.
weight change), but will also potentially differ in patient population and other factors. Selectively
taking certain inputs from a new study while ignoring those which the metamodel has not been
trained on will potentially lead to biased results.

Thus, it is vital that the new study results are incorporated into the original model and (as far as
possible) into the metamodel and then compared (i.e. the metamodel has to be validated again, see
section 5.2). If the metamodel continues to make accurate predictions, we can continue to use it and
analyze the impact of the new clinical data. However, if the predictions of the two models are
different, the metamodel has to be trained on new simulated data by the original model. The
number and constellation of inputs do not necessarily have to change.

We see that the metamodel can never completely replace the original model: the latter is needed to
validate outputs of the former and produce new training data if necessary. The more different inputs
are incorporated into the metamodel, the more flexible the model becomes, and thus the probability
that will be able to usefully incorporate future information increases. However, increasing the
number of inputs is not trivial; see section 6.2.2 for further discussion.

Note that this section was strictly concerned with whether the metamodel accurately approximates
the estimates of the original model when incorporating new evidence. Whether these estimates
make sense or not is a different question, which is discussed in section 6.2.1.



6.1.3. Value-based payments
In the introduction, | alluded to the possibility of applying the estimates of a metamodel in the design
of value-based payments and risk-sharing agreements. Out of the factors | investigated, the price of
dapagliflozin was by far the most impactful, while the one clinical parameter and the prices of other
drugs involved turned out to not have a strong association with incremental costs or effects. Thus |
will focus on financial-based risk-sharing agreements, and how the price of dapagliflozin can be used
in the context of these.

Using the analysis shown in Figure 12, we can quantify the expected distribution of costs per patient
at any price. If a payer is trying to contain costs, they might be hesitant to have a large number of
patients switch from SU to dapagliflozin, even though the latter is more effective and leads to a
higher quality of life. Payer and manufacturer could then agree on a price at which there is an 80%
chance that the incremental costs are lower than 2000€. If the costs are higher than that, the
manufacturer pays the exceeding amount. Such an agreement allows the payer to contain costs, and
the manufacturer will still generate profit in the long run, assuming that the profit margin of
dapagliflozin is high enough to cover for the cases where costs exceed the 2000€ threshold.

There are two main challenges to this kind of approach: first off, incremental costs cannot be directly
measured in the real world, since patients either receive dapagliflozin or SU, and there is no reliable
way to estimate what the costs would have been if the patient had received the other medicine
instead. The costs instead have to be averaged out over the entire Dutch patient population. | am
assuming that health insurers have access to databases which make this possible in principle. The
method only works if in the future both dapagliflozin and SU are reimbursed at a large scale, as this is
a precondition to calculate incremental costs between the two groups. Instead of using a threshold
for incremental costs, it would in theory also be possible to use a threshold for absolute costs that
dapagliflozin patients cannot exceed. This would make it unnecessary to track SU patients. However,
this approach brings its own challenges, since the market as a whole changes over time. Thus the
absolute cost distribution of dapagliflozin patients will likely be different in five years from what it is
today. The incremental costs (after adjusting for the prices of dapagliflozin and SU themselves) can
be assumed to stay roughly constant, since most market changes will likely affect both treatment
lines in a similar manner.

Secondly, the costs estimated by the Cardiff model (and therefore also the metamodel) are based on
a lifetime horizon. Any threshold that could be applied to these costs will also have to be based on a
lifetime horizon (i.e. the average costs of a patient over the entire treatment duration). If the costs
for any patient exceed the threshold, it will likely only happen after many years. As a consequence,
the threshold mechanism provides little protection against high short-term costs: a patient might
experience many expensive complications early on; the expenses will be much higher than average,
but not high enough to reach the threshold right away. The payer thus has to bear the costs and will
only get them paid back in the future by the manufacturer.

A possible solution to this second challenge is to not use a lifetime horizon when simulating training
data from the original model, but instead set a short time horizon, like five years. This would allow
better use of the results for financial value-based agreements, since spending caps or rebates can be
better set for a shorter timeframe. On the other hand, many medicines are valuable because of their
long-term effects and only become cost-effective when using a lifetime horizon. NICE and other
health technology assessment agencies would likely not accept studies based on such short time-
horizons (at least not by themselves), since this contradicts the requirements for cost-effectiveness
studies [51].



Of course one could also train two versions of the metamodel, one with a short-term and one with a
lifetime horizon. However, since the generation of training data is inherently problematic with many
health economic models (see section 6.2.2), this will often be unfeasible.

6.2. Limitations and unresolved issues

6.2.1. Manipulation of clinical parameters
The estimates of any model are only as valid as the data it was trained on. Therefore, any insights
gained from using a metamodel are conditional on the assumption that the original model produces
valid outputs. If the original model produces unrealistic estimates (at least partly depending on the
precise inputs used for producing the training data), the metamodel will replicate these errors.
Worse, since the metamodel omits most of the more detailed outputs included in the original model
(e.g. rates of adverse events, in the case of this study), obviously false estimates are more difficult to
identify.

To illustrate this, | would like to critically discuss the results in section 5.3.1.2. It turned out that
modifying the bodyweight change parameter of dapaglifiozin had a comparably small impact on the
incremental QALYs in the dapagliflozin-SU comparison. This is surprising; the Cardiff model includes a
sophisticated mechanism to simulate the development of the patients’ bodyweight and its impact on
the risk for heart failures (see e.g. McEwan et al. for an explanation [30]). According to the DECLARE
study, which the risk equations in the current version of the Cardiff model are based on, dapagliflozin
is directly associated with lower heart failure rates. It also decreases patients’ bodyweight, which
indirectly leads to lower rates of heart failure in the long-term. However, the latter effect is actually
very small.

The incremental QALYs predicted by the Cardiff model are driven primarily by differences in the
number of hypoglycemic episodes, utility associated with the weight loss and temporarily lower
weight of patients in the dapagliflozin group, and finally differences in the occurrence of heart
failures unrelated to the patients’ bodyweight.

This was confirmed by a manual sensitivity analysis, using the Cardiff model instead of the
metamodel (results in Table 13). Even when setting the weight change associated with dapagliflozin
to O (i.e. it does not lead to weight loss at all), the difference in the incremental number of heart
failures is minimal compared to the base scenario. The miniscule effect of the weight increment on
rates of heart failure can potentially be explained by the fact that the weight difference between
dapagliflozin and SU patients is only temporary and patients gain the lost weight back quickly, once
they switch to insulin treatment.

Table 13: results of the manual sensitivity analysis. Incremental incidence is the number of events in the dapagliflozin group
minus the number of events in the SU group

Dapagliflozin weight SU weight | Incremental Incremental incidence of heart

change change QALYs failures (events per cohort of 1000
patients)

-3.3 1.36 0.61 -8.1

0 1.36 0.50 -7.3

If accurate, these findings would contradict earlier research claiming that the weight loss associated
with dapagliflozin is a major driver of its effect on patients’ quality of life [30, 31]. Unfortunately,
there is no way to validate the findings, since there is of course no clinical evidence for a situation
where dapagliflozin does not lead to weight loss, but has otherwise identical effects to those that are



currently known. This uncovers a potential flaw in the methodology of this study: when the original
model is passed input parameters which are far from the available clinical evidence, it might produce
unrealistic estimates, which the metamodel will reproduce. Usually there is no way to determine
how valid the results are, apart from expert judgement.

The problem is not specific to metamodeling per se: the metamodel will still accurately estimate the
behavior of the original model, and as such serve its intended purpose. Rather, the issue is whether
applying inputs without clinical evidence to the original model is a sensible thing to do.

6.2.2. Time investment
| previously emphasized the massive decrease in computation time needed to simulate results from
the metamodel compared to a PSA in a conventional health economic model (section 5.4). While the
creation of the metamodel itself took many hours, the vast majority of this time was spend on
research and development of a suitable metamodeling method. The coding and execution of the
metamodel in R or another programming language is fairly simple and straightforward. A reasonably
experienced R programmer with an established methodology to build on could probably program a
functional model within a day. For reference, the entire R code used in this thesis is around 700 lines
long (including the Stan code, which is integrated into the R code as a character string).

Far more problematic is the generation of representative training data from the original model,
which will most often be coded in spreadsheet software like Microsoft Excel. The drawbacks of using
Excel for health technology assessment have been discussed elsewhere [52], and | will focus only on
one particular aspect: spreadsheet models make it difficult to automatically run the model with
varying input values and store the results. In the case of this study, running 40 experiments and
documenting the results took roughly four hours and involved lots of manual, error prone work. This
effectively limits the number of inputs that can be incorporated into the metamodel, since each
additional parameter significantly increases the amount of manual work involved.

If the model were coded in a proper programming language, this would be far less of a problem. In
that case, it is easy to write a loop which repeatedly runs the model with randomized inputs and
stores the results. There is then no real limit to the number of inputs used: the computation time will
increase with each input (in the case of this study, the time which the Stan model takes to produce
an adequate number of parameter samples); however, this is less of a problem, since this process
requires no supervision by the user.

Unfortunately, the use of modern programming languages for health economic modelling is not
widespread yet. The problem of having to work with spreadsheet models will persist for the time
being. | see this as the major limitation of my methodology: with the time-consuming and error-
prone work involved in producing adequate training data, the creation of a metamodel may not be
worth the effort in many otherwise promising use-cases.

6.2.3. Timeline
The timeline analysis in section 5.3.2 models the incremental costs of dapagliflozin treatment
compared to SU treatment at different points time. Specifically, it models the cost-effectiveness
evaluation at each point in time (i.e. what the Cardiff model would put out, given that exact scenario)
(Figure 16) and the probability that the treatment will be cost-saving or not (Figure 17). This is not
the same as the lifetime costs of a patient starting at a particular time, since the simulation assumes
that once a patient started treatment, the price of dapagliflozin stays constant. For instance, if a
patient starts treatment in 2027, the price remains fixed at € 517.44, even though it actually falls



shortly after. This means that the lifetime costs for that patient would actually be slightly lower. The
modelled estimates are not “wrong”, but they answer a different question than one might expect.

The actual lifetime costs of a patient are arguably more relevant in the context of value-based
payments. However, the current version of the Cardiff model does not allow to calculate this. It
would require to pass an entire timeline of prices to the model (instead of just a single price) and
then have patients start treatment at different points on that timeline. Implementing this requires
modifying the VBA and C++ code of the model, which | was unable to do due to my limited
proficiency in these languages. The calculated estimates would also be fundamentally different from
and incomparable to ordinary cost-effectiveness evaluations. Nonetheless, such an analysis might
produce very useful results especially in the context of value-based payments, and should be
explored in future research.

6.2.4. (Un-)normality of the original model’s distribution
The approximation via a multivariate normal distribution assumes that the distribution of cost-
effectiveness pairs simulated by the original model is approximately Gaussian, or normally
distributed. A strong correlation between costs and effects is not problematic. However, if the
distribution is multimodal® or otherwise irregularly shaped, the approximation will be inaccurate and
produce potentially biased and misleading results.

Figure 18 provides a visual illustration: examples 1 and 2 are approximately Gaussian, therefore they
can be approximated well through a multivariate normal distribution. Example 3 has an irregular and
asymmetric shape; it is not well approximated with a normal distribution. Example 4 has two

separate modes around which the cost-effectiveness pairs cluster. It is not well approximated either.

Note that these are extreme examples - in many cases a normal approximation will still provide
useful results, even when the target distribution has an irregular shape. As discussed earlier, the goal
of metamodeling is not to reproduce the original model, but to approximate it well enough to
accurately answer all questions of interest. Proper model validation is therefore crucial.

6 A multimodal distribution has more than one maximum.
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Figure 18: different shapes that the distribution of simulated cost-effectiveness pairs could take. Simulated data, not
connected to the case study.

6.3. Conclusion and recommendations
| hope that my research report demonstrated the functionality and validity of applying the
metamodel technique to health economic simulation models. The implementation is relatively
straightforward, and the results add a valuable perspective to the cost-effectiveness of dapagliflozin
treatment in the Netherlands. | can give an unconditional recommendation to use metamodeling for
estimating the consequences of price changes, as long as careful model validation is included in the
analysis. For changes in clinical effectiveness, metamodeling can in principle also be used, but the
results have to be critically examined on a case-by-case basis. Even if the metamodel accurately
approximates the estimates of the original model, the estimates should be evaluated in the light of
available clinical evidence and not be taken at face-value.

The main practical challenge is the generation of suitable training data for the metamodel. As
indicated earlier, this is far less of a problem when the original model is coded in a proper



programming language instead of a spreadsheet. | thus support calls for the widespread adoption of
modern programming languages in health technology assessment [52]. The process could be sped up
even further if there was some kind of standardized framework regarding the construction of health
economic models in R or Python. For ideas of what such a framework could look like, | refer the
reader to a series of publications by Alarid-Escudero and Krijkamp et al, providing general coding
guidelines [53] as well as specific tutorials for cohort-state transition models [54] and patient
microsimulation models [55].

For the case study at hand, the metamodel demonstrated a good predictive accuracy despite the
assumption that the predictors have linear effect on the outcomes. This will not always be the case.
Gaussian process regression is a candidate for a more general metamodeling method which can
approximate arbitrary nonlinear effects. Many authors (e.g. Gramacy [56]) have written about the
use of Gaussian processes for metamodeling of simulation experiments, and | see no reason why
such methods could not be adapted to health economic models. It has to be noted, however, that
Gaussians processes are more difficult than ordinary regression methods. Learning to use them
requires dedicated research and practice. An accessible introduction to Gaussian processes with
applications in health economics would thus be a valuable addition to the literature.



7. Appendix
7.1.1. Cardiff model inputs

7.1.1.1. Health economic assumptions
o Model: Cardiff model using UKPDS 68 risk equations and DECLARE data.
e Cohort size for simulations: 250 for training data, 10000 for test data, 1000 for manual
sensitivity analysis (Table 13)
e Time horizon: lifetime (implemented as 40 years).
e Cycle length: 6 months.
e Perspective: societal
e Discount rates: 4% for costs, 1.5% for effects.

7.1.1.2. Patient population
e T2DM patients with insufficient glycemic control on metformin alone. The model cohort was
considered representative of Dutch patients who would be eligible to receive dapagliflozin
added to metformin. Table 14 shows the precise inputs.
e |n case SE was not reported and could not be calculated, it was assumed to be 1% of the
mean.

Table 14: Cardiff model inputs, patient characteristics and clinical risk factors

Demographics Source
Age 58.40 0.32 Nauck et al. 2014[57, 58]
Proportion female (%) 0.448 0.02 Nauck et al. 2014[57, 58]
Diabetes duration (Years) 6.32 0.19 Nauck et al. 2014[57, 58]
Height (m) 1.67 0.0167 Nauck et al. 2014([57,
58], SE assumed
Proportion Afro-Caribbean (%) 0.062 0.00062 Nauck et al. 2014[57,
58], SE assumed
Proportion Indian (%) 0.076 0.00076 Nauck et al. 2014[57,
58], SE assumed
Proportion smokers (%) 0.176 0.00176 Nauck et al. 2014([57,

58], SE assumed
Clinical risk factors

HbA1c (%) 7.72 0.025 Nauck et al. 2014[57, 58]

Total-Cholesterol (mg/dL) 182.91 1.829 Nauck et al. 2011[58], SE
assumed

HDL-Cholesterol (mg/dL) 46.02 0.46 Nauck et al. 2011[58], SE
assumed

LDL-Cholesterol (mg/dL) 103.25 1.033 Nauck et al. 2011[58], SE
assumed

SBP (mmHg) 133.30 1.333 Nauck et al. 2011[58], SE
assumed

DBP (mmHg) 80.6 0.806 Nauck et al. 2011[58], SE
assumed

Weight (Kg) 88.02 0.88 Nauck et al. 2014[57,
58], SE assumed

eGFR (ml/min/1.732) 89.95 0.9 Nauck et al. 2014[57,
58], SE assumed

Haemoglobin (g/dl) 13.71 0.137 Hayes et al 2013[59], SE
assumed

Albuminuria (mg/l) 47.00 0.47 Hayes et al 2013[59], SE
assumed

White blood cell count (106) 6.80 0.068 Hayes et al 2013[59], SE
assumed

Heart rate (bpm) 72.00 0.72 Hayes et al 2013[59]



Glucose variability

Haematocrit (%)
Ischemic heart disease

Myocardial infarction

Retinopathy
All other history
All medication use

37.26

41.12
0.09375
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0
0

0

0
0
0

19

17
.009

.009

.0058

DECLARE baseline[38,
60]

Nauck et al. 2011[58]
Nauck et al. 2011[58]
based on % with prior
history of CVD,
distributed equally over
ischemic heart disease
and myocardial
infarction (assumption)
Nauck et al. 2011[58]
based on % with prior
history of CVD,
distributed equally over
ischemic heart disease
and myocardial
infarction (assumption)
Nauck et al. 2011[58]
Assumption
Assumption

Abbreviations: HDL, high-density lipoprotein; kg, kilogram; LDL, low-density lipoprotein; m, meter; mmHg, millimeter of
mercury; mmol/L, millimole/liter; SBP, systolic blood pressure.

7.1.1.3.

Treatment profiles

e  HbAlc threshold for therapy change: 8% (assumed Dutch clinical practice).
e In case SE was not reported and could not be calculated, it was assumed to be 10% of the mean.

Table 15: Cardiff model inputs, treatment profiles

1st line 2"d |ine 3rd line
Comparat | Source Interventi Source Interventi | Source MET Source
or: on: onl: +
MET + SU MET + MET + Insuli
Mean (SE) dapaglifloz insulin n+
in Mean (SE) Bolus
Mean (SE) Mean
(SE)
AHbA1cin -0.67 Barnettet | -0.67 Barnettet | -0.13 Lozano- -1.68 | Hollander
year 1 (%) (0.0638) al. (0.1582) al. (0.5230) Ortega et al. (0.16 | etal.
2016([61] 2016[61] 2016[62] 8) (2008)[63
]
HbAlc 12.00 Assumpti 12.00 Assumpti Assumption 12.00 | Assumpti
months (0.00) on (0.00) on 12.00 (0.00) | on
benefit in (0.00)
year 1
ASBP 0.90 (0.09) | Nauck et -3.80 Nauck et 1.31 Assumed 0.00 Hollander
(mmHg) al. (0.38) al. (2.1990) equal to MET etal.
2014[57] 2014[57] +SU +insulin, (2008)[63
Lozano- ]
Ortega et al.
2016[62]
ADBP -0.40 Nauck et -1.60 Nauck et 0.00 Assumption 0.00 Assumpti
(mmHg) (0.04) al. (0.02) al. (0.00) (0.00) | on
2011[58] 2011[58]
ATotal -0.50 Nauck et 1.27 (0.13) | Nauck et 0.00 Assumption 0.00 Assumpti
Cholesterol (0.05) al. al. (0.00) (0.00) | on
(mg/dL) 2011[58] 2011[58]
AHDL -0.034 Nauck et 1.26 (0.13) | Nauck et Assumption 0.00 Assumpti
Cholesterol (0.003) al. al. 0.00 (0.00) | on
(mg/dL) 2011[58] 2011[58] (0.00)



AWeight (kg) | 1.36 (0.09) | Barnettet | -3.30 Barnettet | 3.20 Lozano- 4.20 Hollander

al. (0.90) al. (1.8546) Ortega et al. (0.42) | etal.
2016[61] 2016[61] 2016[62] (2008)[63
]
Years of 2.00 (0.00) | Nauck et 2.00(0.00) | Nauck et Assumption 1.00 Assumpti
maintained al. al. 1.00 (0.00) | on
weight loss 2014([57], 2014[57], | (0.00)
Charokop Charokop
ouetal. ouetal.
2015[64] 2015[64]
Natural 0.00 (0.00) | Nauck et 0.00 (0.00) | Nauck et Assumption Assumpti
annual al. al. 0.1(0.01) 0.1 on
weight gain 2014[57] 2014[57] (0.01)
(kg)
Years toloss | 0.00(0.00) & Assumpti | 1.00(0.00) | Assumpti Assumption 0.00 Assumpti
of weight on on 0.00 (0.00) | on
effect (0.00)
Glucose 0.00 (0.00) | Assumpti | 0.00(0.00) | Assumpti 0.00 Assumption 0.00 Assumpti
variability on on (0.00) (0.00) | on
change
Haematocrit | 0.390 Nauck et 2.860 Nauck et 0.00 Assumption 0.00 Assumpti
change (0.130) al. (0.140) al. (0.00) (0.00) | on
2011[58] 2011[58]
Annual 0.408 Charokop | 0.035 Charokop | 0.011 Charokopou 0.616 | Charokop
number of (0.082) ouetal. (0.006) ou et al. (0.0022) etal. 2015 (0.12 | ouetal.
symptomatic 2015 [30] 2015 [30] [30] 3) 2015 [30]
hypo
Annual 0.007 Charokop | 0(0) Charokop | 0.037 Charokopou 0.022 | Charokop
number of (0.001) ouetal. ou et al. (0.0074) et al. 2015 (0.00 | ouetal.
severe hypo 2015 [30] 2015 [30] [30] 4) 2015 [30]
Annual 0.064 Nauck et 0.108 Nauck et 0.00 Assumption 0.00 Assumpti
probability (0.0064) al. (0.0108) al. (0.00) (0.00) | on
of UTI 2014[57] 2014[57]
Annual 0.027 Nauck et 0.123 Nauck et 0.00 Assumption 0.00 Assumpti
probability (0.0027) al. (0.0123) al. (0.00) (0.00) | on
of GI 2014[57] 2014[57]
Annual 0.0515 Nauck et 0.00246 Nauck et 0.042 Assumed 0.00 Assumpti
probability (0.00515) al. (0.000246) | al. (0.0042) equal to (0.00) | on
of 2014[57] 2014[57] MET+SU+insu
discontinuati lin. Holman et
on al. 2007[65]

Abbreviations: BMI, body mass index; Dapa, dapagliflozin; DPP-4i, dipeptidyl peptidase-4 inhibitors; Gl, genital infection;

HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; hypo, hypoglycemia; kg, kilogram; MET, metformin; mmHg,

millimeter of mercury; mmol/L, millimole/liter; SBP, systolic blood pressure; SU, sulfonylurea; UTI, urinary tract infection;
Y1, year 1; Y1>1, subsequent years; Y1>1, year 1 and subsequent years.

7.1.1.4. Costs

Table 16: calculation of baseline SU price. The weighted mean is calculated by multiplying each price with the respective
market share and then summing everything up.

Costs per day Market share | Source
Glibenclamide €0.10 0.01 CIBG [36]
Tolbutamide €0.11 0.16 CIBG [36]
Gliclazide (Diamicron) €0.11 0.63 CIBG [36]
Glimepiride (Amaryl) €0.02 0.20 CIBG [36]

Mean (weighted) SU €0.09 1.00



Table 17: Cardiff model inputs, non-treatment costs

Direct costs of disease and treatment-related events, 2019 price level

Hospitalisation for angina

Myocardial infarction (incl. Y1 cost

of subsequent events)
Myocardial infarction (fatal)

Congestive heart failure

Congestive heart failure (fatal)+

Stroke (incl. Y1 cost of subsequent

events)
Stroke (fatal)

Amputation (incl. Y1 cost of
subsequent events)
Amputation (fatal)§

Blindness

End-stage renal disease

Ulcer

PCI

CABG

Non-coronary revascularisation
Severe hypo event
Symptomatic hypo event

UTl and GI

Discontinuation

Annual indirect costs of disease and treatment-related events, 2019 price levelq

Ischaemic heart disease
Myocardial infarction
Congestive heart failure
Stroke

Amputation

Blindness

End-stage renal disease

€2,700in Y1, €666 in Y>1
€20,3891inY1,€1,239inY>1

€18,146inY1

€11,280in Y21
€10,039inY1

€39,349in Y1, €4,947 inY>1

€22,429inY1
€17,261inY1, €647 inY>1

€9,839inY1

€2,737inY21
€91,074inY21

€2,383inY1
€18,583inY1,€1,519inY>1
€22,166inY1,€1,278 inY>1
€2,561inY1

€522
€3

€46.50 from a health care perspective,

€88.18 from a societal perspective

€35.25 from a health care perspective,

€76.92 from a societal perspective

€0 in base case, €1,153 in scenario

€0 in base case, €8,699 in scenario

€0 in base case, €8,699 in scenario

€0 in base case, €8,699 in scenario

€0 in base case, €6,423 in scenario

€0 in base case, €8,699 in scenario

€0 in base case, €8,699 in scenario

Soekhlal et al. 2013[66]
Greving et al. (2011)(67]

Greving et al. (2011)(67]
Postmus et al. (2011)8]
Assumption

Baeten et al. (2010)(6°]

Baeten et al. (2010)!69]
Niessen et al. (2003)70]

Assumption

Niessen et al. (2003)(70]

De Vries et al. (2016)71]
Redekop et al. 2003[72]
Osnabrugge et al. 2015([73]
Osnabrugge et al. 2015([73]
Spronk et al. 2008(74]

De Groot et al. 2018[75]
De Groot et al. 2018[75]

NHG (2013)76l and Hakkaart-van
Roijen et al. (2016)177]
Hakkaart-van Roijen et al.
(2016)77)

Clarke et al. (2008)!78!
Isaaz et al. (2010)179!
Ericson et al. (2011)(80
Lindgren et al. (2008)(81
Fisher et al. (2003)!82]

Frick et al. (2003)83]
Naim et al. (2010)84

¥ Costs for fatal congestive heart failure are unknown. The ratio of costs for fatal compared with non-fatal congestive heart
failure was assumed to be equal to the ratio of costs for fatal compared with non-fatal myocardial infarction.

§ Costs for fatal amputation are unknown. The ratio of costs for fatal compared with non-fatal amputation was assumed to
be equal to the ratio of costs for fatal compared with non-fatal stroke.

9] Productivity losses are applied below the age of 66.

7.1.1.5.

Utilities

Table 18: Cardiff model inputs, utilities

Disutilities

Diabetes-related event disutilities

Ischaemic heart disease
Myocardial infarction
Congestive heart failure
Stroke

Amputation

0.042 (0.008)
0.047 (0.005)
0.050 (0.007)
0.060 (0.007)
0.095 (0.040)

Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]



Blindness

End-stage renal disease

Ulcer
PCI
CABG

Non-coronary revascularisation

0.045 (0.009)
0.038 (0.011)
0.042 (0.007)
0.042 (0.008)
0.042 (0.008)
0.045 (0.013)

Treatment-related event disutilities

Symptomatic hypo

Nocturnal hypo
Severe hypo
uTl

Gl

BMI disutilities

BMI (per unit increase)

BMI (per unit decrease)

7.1.2. Training data
Table 19: input parameters obtained through LHS sampling

Index

O 00 N o U b W N

=
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24

weighteffect

-5.48
-3.91
-1.76
-3.79
-4.28
-0.6

-4.06
-1.32
-2.01
-5.38
-2.24
-6.04
-2.72
-1.57
-4.35
-1.43
-2.51
-3.6

-2.33
-4.5

-5.75
-0.09
-2.86
-1.85

met

24.69
28.12
13.39
11.27
6.49

20.75
30.64
3.94

23.77
16.49
34.42
31.81
21.11
12.41
4.88

35.81
5.76

29.34
10.51
9.86

19.66
18.12
3.24

16.03

0.014 (0.0014)
0

0.047 (0.0047)
0.025 (0.0025)
0.038 (0.0038)

0.017 (0.005)
-0.047 (0.005)

dapa
412.82
599.36
155.41
763.65
491.94
751.89
374.06
844.87
668.57
630.04
177.96
316.66
290.53
700.81
221.97
822.72
334.43
437.06
76.69
557.48
187.61
45.7
352.26
548.81

Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85], assumed equal to ischemic heart disease
Sullivan et al. (2016)[85], assumed equal to ischemic heart disease

Sullivan et al. (2016)[85]

Currie et al. (2006)[86]
Assumed

Currie et al. (2006)[86]
Sullivan et al. (2016)[85]
Sullivan et al. (2016)[85]

Grandy et al. (2014)[87]
Grandy et al. (2014)[87]
Abbreviations: BMI, body mass index; Dapa, dapagliflozin; DPP-4i, dipeptidyl peptidase-4 inhibitors; Gl, genital infection;
HbA1lc, glycated hemoglobin; HDL, high-density lipoprotein; hypo, hypoglycemia; kg, kilogram; MET, metformin; mmHg,
millimeter of mercury; mmol/L, millimole/liter; SBP, systolic blood pressure; SU, sulfonylurea; UTI, urinary tract infection;
Y1, year 1; Y1>1, subsequent years; Y1>1, year 1 and subsequent years.

SuU met_dapa met_SU met_ins met_ins_bolus
25.2 493.51 105.89 365.59 1220.27
7.19 683.48 91.31 369.02 1223.7
12.4 224.8 81.79 354.29 1208.97
24.45 830.92 91.72 352.17 1206.85
3.25 554.43 65.74 347.39 1202.07
11.77 828.64 88.52 361.65 1216.33
22.65 460.7 109.29 371.54 1226.22
4.89 904.81 64.83 344.84 1199.52
21.62 748.34 101.39 364.67 1219.35
13.47 702.53 85.96 357.39 1212.07
26.85 268.38 117.27 375.32 1230
15.95 404.47 103.76 372.71 1227.39
7.74 367.64 84.85 362.01 1216.69
31.65 769.22 100.06 353.31 1207.99
26.45 282.85 87.33 345.78 1200.46
8.76 914.53 100.57 376.71 1231.39
36.38 396.19 98.14 346.66 1201.34
32.57 522.4 117.91 370.24 1224.92
19.39 143.2 85.9 351.41 1206.09
30.19 623.34 96.05 350.76 1205.44
35.1 263.27 110.76 360.56 1215.24
28.69 119.82 102.81 359.02 1213.7
6.12 411.5 65.36 344.14 1198.82
20.47 620.84 92.5 356.93 1211.61



25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

-4.86
-0.37
-5.25
-3.38
-6.26
-0.69
-3.14
-4.72
-1.14
-6.37
-5.88
-6.49
-0.32
-0.93
-4.99
-3.03

18.56
35.36
23.02
26.38
0.4
15.07
14.32
8.87
26.52
33.1
7.75
28.55
2.69
22.01
1.17
32.52

1251
525.85
652.96
588.41
461.27
245.47
57.16
873.8
792.12
253.66
98.13
735.07
451.66
905.15
888.5
11.89

18.39
16.47
28.34
9.96
17.54
0.11
37.42
11.23
30.73
33.44
4.09
1.39
22.97
2.66
35.47
14.77

199.66
617.21
731.98
670.79
517.67
316.54
127.48
938.67
874.64
342.76
161.88
819.62
510.35
983.16
945.67
100.41

92.95
107.83
107.36
92.34
73.94
71.18
107.74
76.1
113.25
122.54
67.84
85.94
81.66
80.67
92.64
103.29

359.46
376.26
363.92
367.28
3413
355.97
355.22
349.77
367.42
374
348.65
369.45
343.59
362.91
342.07
373.42

1214.14
1230.94
1218.6

1221.96
1195.98
1210.65
1209.9

1204.45
12221

1228.68
1203.33
1224.13
1198.27
1217.59
1196.75
1228.1
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Figure 19: visualization of training data obtained from the Cardiff model. Each of the 40 sets was obtained by putting the
respective inputs from Table 19 into the Cardiff model and drawing 250 samples from the Cardiff model
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7.1.4. Code
HiHHE Packages #it#H#
library(rstan)
library(rethinking)
library(tidyverse)
library(bayesplot)
bayesplot_theme_set(theme_minimal())
library(MASS)
library(readxl)
library(ggpointdensity)
library(LHS)

H### Section 4.1: A short introduction to Bayesian statistics #####

# small sample
y<-15
X <-20

n_samples <- 101000
p <-rep( NA, n_samples)
p[1] <- 0.5

for (iin 2:n_samples) {
p_new <-rnorm( 1, p[i-1],0.1)
if (p_new <0 ) p_new <-abs( p_new)
if (p_new>1)p new<-2-p new
g0 <- dbinom(y, x, pli-1] ) * dbeta(p[i-1], 8, 8)
gl <- dbinom(y, x, p_new ) * dbeta(p_new, 8, 8)
pli] <- ifelse( runif(1) < q1/90, p_new, p[i-1] )

}

p_small <- data.frame(p = p[1001:n_samples], source = "small sample")

# Table 1
precis(p, prob =0.9)

# large sample
y<-75
x <-100

n_samples <- 101000
p <-rep( NA, n_samples)
p[1] <- 0.5

for (iin 2:n_samples) {
p_new <-rnorm( 1, p[i-1],0.1)
if (p_new <0) p_new <- abs( p_new)
if (p_new>1)p_new<-2-p_new
g0 <- dbinom(y, x, pli-1] ) * dbeta(p[i-1], 8, 8)
gl <- dbinom(vy, x, p_new ) * dbeta(p_new, 8, 8)
pli] <- ifelse( runif(1) < q1/q0, p_new, p[i-1])



}

p_large <-p
p_large <- data.frame(p = p[1001:n_samples], source = "large sample")

# Figure 1
p <- rbind(p_small, p_large)

ggplot(p) +
geom_function(fun = function(x) dbeta(x,8,8), aes(colour = "Prior"), size = 1) +
geom_density(aes(p, colour = "Posterior"), size =1) +
scale_x_continuous(limits = ¢(0,1)) +
scale_color_manual(name ="", values = c("Prior" = "blue", "Posterior" = "red")) +
xlab("proportion male patients") +
ylab("probability density") +
geom_vline(xintercept = mean(p), linetype = 2, size = 1, color = "grey") +
geom_vline(xintercept = 0.5, linetype = 2, size = 1, color = "grey") +
facet_wrap(. ~ source) +
theme_minimal() +
theme( text = element_text(size = 12))

# Section 4.5: simulating data sets ####

price_met <- 18.26
price_dapa <- 459.85
price_SU <-33.46

dispensing_fees <- 4*7
consumables_ins <- 284.9
consumables_ins_bolus <- 1139.58
weighteffect <- -6.6

price_met + price_dapa + 2*dispensing_fees

price_met + price_SU + 2*dispensing_fees

price_met + 2*dispensing_fees + consumables_ins
price_met + 2*dispensing_fees + consumables_ins_bolus

# Table 17
N <-40
sim_factors <- maximinLHS(N, 4)

sim_params <- data.frame(index = 1:N)

sim_paramsSmet <- round( sim_factors[,1] * price_met * 2, 2)

sim_paramsSdapa <- round( sim_factors[,2] * price_dapa * 2, 2)

sim_paramsSSU <- round( sim_factors[,3] * price_SU * 2, 2)

sim_paramsSmet_dapa <- sim_paramsSmet + sim_paramsSdapa + 2*dispensing_fees
sim_paramsSmet_SU <- sim_paramsSmet + sim_paramsSSU + 2*dispensing_fees
sim_paramsSmet_ins <- sim_paramsSmet + 2*dispensing_fees + consumables_ins
sim_paramsSmet_ins_bolus <- sim_paramsSmet + 2*dispensing_fees + consumables_ins_bolus
sim_paramsSweighteffect <- round( sim_factors[,4] * weighteffect, 2)



sim_random?20 <- data.frame(X1 = runif(20, 0, 1),
X2 =runif(20, 0, 1),
source = "20 simulations")

sim_random2000 <- data.frame(X1 = runif(2000, 0, 1),
X2 = runif(2000, 0, 1),
source = "2000 simulations")

sim_random <- rbind(sim_random20, sim_random2000)

# Figure 5

ggplot(sim_random, aes(X1, X2)) +
geom_point(size = 2) +
facet_wrap(source ~.) +
theme_grey() +
theme( text = element_text(size = 14))

N <- 20
sim_factors <- maximinLHS(N, 2)

sim_factors <- data.frame(sim_factors)
sim_factorsSsource <- "LHS"

# Figure 6
ggplot(sim_factors, aes(X1, X2)) +
geom_point(size = 2, fill = "black") +

theme_grey() +
theme( text = element_text(size = 14))

#### Load training data #iHi#

df <- read_excel("[...]", sheet = 1) %>% # insert path to training data here
rename("effects" =1,
"costs" = 2)

dlist <- list(effects = dfSeffects, costs = dfScosts, weight = dfSweighteffect,
pDapa = dfSdapa, pMet = dfSmet, pSU = df$SSU, N = nrow(df))

H#t## Section 7.2: training data #####

# Figure 19
ggplot(df) +
geom_point(aes(effects, costs), size = 1, color = "blue", alpha = 0.5) +
facet_wrap( ~ index, ncol =5) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
theme_minimal()

#### Section 4.6: Priors ####



## Prior model, unconditioned on the data ##
prior_model <- stan(model_code =
"data {
int N;
vector[N] costs;
vector[N] effects;
vector[N] weight;
vector[N] pDapa;
vector[N] pMet;
vector[N] pSU;
}

generated quantities {
real alphaC;
real betaC_dapa;
real betaC_SU;
real betaC_met;
real alphak;
real betaE_weight;
real betaC_weight;
vector<lower=0>[2] sigma;

real muk;

real muC;
vector[2] MU;
vector[2] y_sim;

real alphaE_std = normal_rng(0, 0.5);

real betaE_weight_std = normal_rng(0, 0.5);
real betaC_weight_std = normal_rng(0, 0.5);
real alphaC_std = normal_rng(0, 0.5);

real betaC_dapa_std = normal_rng(0, 0.5);
real betaC_SU_std = normal_rng(0, 0.5);
real betaC_met_std = normal_rng(0, 0.5);
matrix[2,2] Rho = Ikj_corr_rng( 2,2 );
vector[2] sigma_std;

sigma_std[1] = exponential_rng(1);
sigma_std[2] = exponential_rng(1);

alphaC = sd(costs) * (alphaC_std - betaC_weight_std * mean(weight) / sd(weight) -
betaC_dapa_std * mean(pDapa) / sd(pDapa)
- betaC_SU_std * mean(pSU) / sd(pSU) - betaC_met_std * mean(pMet) / sd(pMet))
+ mean(costs);
betaC_dapa = betaC_dapa_std * sd(costs) / sd(pDapa);
betaC_SU = betaC_SU_std * sd(costs) / sd(pSU);
betaC_met = betaC_met_std * sd(costs) / sd(pMet);

alphak = sd(effects) * (alphaE_std - betaE_weight_std * mean(weight) / sd(weight)) +
mean(effects);

betaE_weight = betaE_weight_std * sd(effects) / sd(weight);

betaC_weight = betaC_weight_std * sd(costs) / sd(weight);



sigma[1] = sd(effects) * sigma_std[1];
sigma[2] = sd(costs) * sigma_std[2];

muE = alphaE + betaE_weight * (-3.3) ;
muC = alphaC + betaC_weight * (- 3.3) +

betaC_dapa * 459.85 + betaC_SU * 33.46 + betaC_met * 18.26;
MU = [muE, muC]’;

y_sim = multi_normal_rng( MU, quad_form_diag(Rho, sigma) );
}", data = dlist , chains = 4, cores = 4, warmup = 500, iter = 3000, algorithm = "Fixed_param")

prior <- rstan::extract(prior_model)
prior.matrix <- as.matrix(prior_model)

# Figure 7
mcmc_areas(prior.matrix,
pars = c("betaC_dapa_std", "betaC_SU_std", "betaC_met_std",
"betaE_weight_std", "betaC_weight_std"),
prob =0.9) +
scale_x_continuous(limits = ¢(-2.5, 2.5)) +
theme( text = element_text(size = 14))

mcmc_areas(prior.matrix,
pars = c("Rho[1,2]"),
prob =0.9)

sim_df <- data.frame(effects = priorSy_sim[,1],
costs = priorSy_sim[,2])

# Figure 8
ggplot(sim_df) +
geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 0.75, show.legend = FALSE) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
theme_minimal() +
theme( text = element_text(size = 14)) +
xlab( "Incremental effects" ) +
ylab( "Incremental costs" )

##H# Section 5.1: Parameter estimates ####
##t Actual model, conditioned on the data ##

multinormal_model <- stan(model_code =
"data {
int N;
vector[N] costs;
vector[N] effects;
vector[N] weight;
vector[N] pDapa;



vector[N] pMet;
vector[N] pSU;
}

transformed data {
vector[N] costs_std;
vector[N] effects_std;
vector[N] pDapa_std;
vector[N] pMet_std;
vector[N] pSU_std;
vector[N] weight_std;

costs_std = (costs - mean(costs)) / sd(costs);
effects_std = (effects - mean(effects)) / sd(effects);
pDapa_std = (pDapa - mean(pDapa)) / sd(pDapa);
pMet_std = (pMet - mean(pMet)) / sd(pMet);
pSU_std = (pSU - mean(pSU)) / sd(pSU);
weight_std = (weight - mean(weight)) / sd(weight);
}
parameters {
real alphaC_std;
real betaC_dapa_std;
real betaC_SU_std;
real betaC_met_std;
real alphaE_std;
real betaE_weight_std;
real betaC_weight_std;
corr_matrix[2] Rho;
vector<lower=0>[2] sigma_std;
}
model {
vector[N] muk;
vector[N] muC;
// priors
alphaE_std ~ normal(0, 0.5);
betaE_weight_std ~ normal(0, 0.5);
betaC_weight_std ~ normal(0, 0.5);
alphaC_std ~ normal(0, 0.5);
betaC_dapa_std ~ normal(0, 0.5);
betaC_SU_std ~ normal(0, 0.5);
betaC_met_std ~ normal(0, 0.5);
Rho ~ Ikj_corr( 2);
sigma_std ~ exponential(1);

// sampling of incremental effects
for (iin 1:N) {
muE[i] = alphaE_std + betaE_weight_std * weight_std[i] ;
muC[i] = alphaC_std + betaC_weight_std * weight_std[i] +
betaC_dapa_std * pDapa_std[i] + betaC_SU_std * pSU_std[i] + betaC_met_std *
pMet_std[i] ;
}

{



vector[2] YY[N];
vector[2] MU[N];
for (jin 1:N ) MU[j] = [ muE[j] , muC[j] ]}
for (jin 1:N) YY[j] = [ effects_std[j], costs_std[j] 1';
YY ~ multi_normal( MU , quad_form_diag(Rho , sigma_std) );
}

}

generated quantities {

// unstandardized parameters
real alphaC;
real betaC_dapa;
real betaC_SU;
real betaC_met;
real alphak;
real betaE_weight;
real betaC_weight;
vector<lower=0>[2] sigma;

alphaC = sd(costs) * (alphaC_std - betaC_weight_std * mean(weight) / sd(weight) -
betaC_dapa_std * mean(pDapa) / sd(pDapa)
- betaC_SU_std * mean(pSU) / sd(pSU) - betaC_met_std * mean(pMet) / sd(pMet))
+ mean(costs);
betaC_dapa = betaC_dapa_std * sd(costs) / sd(pDapa);
betaC_SU = betaC_SU_std * sd(costs) / sd(pSU);
betaC_met = betaC_met_std * sd(costs) / sd(pMet);

alphaE = sd(effects) * (alphaE_std - betaE_weight_std * mean(weight) / sd(weight)) +
mean(effects);

betaE_weight = betaE_weight_std * sd(effects) / sd(weight);

betaC_weight = betaC_weight_std * sd(costs) / sd(weight);

sigmal1] = sd(effects) * sigma_std[1];

sigmal2] = sd(costs) * sigma_std[2];
}", data = dlist, chains = 4, cores = 4, warmup = 500, iter = 3000)

# Table 7 and Table 8
precis_model <- as.data.frame( precis(multinormal_model, 3, prob = 0.9, digits = 4) )

post <- rstan::extract(multinormal_model)
post.matrix <- as.matrix(multinormal_model)

# Figure 9
mcmc_areas(post.matrix,
pars = c("betaC_dapa_std", "betaC_SU_std", "betaC_met_std",
"betaE_weight_std", "betaC_weight_std"),
prob =0.9) +
legend_text(size = 14)

HiH#H Section 5.2: posterior predictive simulation and model validation ####
N <- 10000

price_met <- 18.26

price_dapa <- 459.85



price_SU <- 33.46
weight <--3.3

sim <- matrix(NA, nrow = 2, ncol = N)
for (iin 1:N) {
mu <- ¢(
(postSalphakE[i] + postSbetaE_weight[i] * weight),
(postSalphaC[i] + postSbetaC_weight[i] * weight +
postSbetaC_dapali] * price_dapa + postSbetaC_SU[i] * price_SU + postSbetaC_met[i] *
price_met))
Sigma <- matrix( c( postSsigmali,1]*2, postSRhol[i,1,2]*postSsigmali,1]*postSsigmali,2],
postSRhol[i,1,2]*postSsigmali,1]*postSsigmali,2], postSsigmali,2]42 ), 2, 2)
sim[,i] <- mvrnorm(1, mu, Sigma)

}

sim_df <- data.frame(effects = sim[1,],
costs =sim[2,],
source = "Metamodel")

Cardiff_model_df <- read.csv2("[...]") %>% # insert path of validation data here
rename("effects" =1,
"costs" =2) %>%
dplyr::select(1:2) %>%
mutate(source = "Cardiff model")

sim_df <- rbind(sim_df, Cardiff_model_df)

# Table 10
sim_df_summary <- sim_df %>% group_by(source) %>%

summarise(costs_mean = mean(costs), effects_mean = mean(effects), cost_sd = sd(costs),
effects_sd = sd(effects))

CEAC <- data.frame( threshold = seq(0, 50000, length.out = 1000) )
CEACSP_Metamodel <- rep(0, 1000)
CEACSP_Cardiff_model <- rep(0, 1000)
for (i in 1:1000) {
CEACSP_Metamodel[i] <- sum (sim_df[sim_dfSsource == "Metamodel",2] / sim_df[sim_dfSsource
== "Metamodel",1] < CEACSthreshold[i] )/ N
CEACSP_Cardiff_model[i] <- sum (sim_df[sim_dfSsource == "Cardiff model",2] /
sim_df[sim_dfSsource == "Cardiff model",1] < CEACSthreshold[i] ) / N
}

# Figure 10
ggplot(sim_df) +
geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 0.75, show.legend = FALSE) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
facet_wrap(. ~ source) +
xlab( "Incremental QALYs" ) +
ylab( "Incremental costs" ) +
theme_minimal() +
theme( text = element_text(size = 14))



# Figure 11
ggplot(CEAC) +
geom_line(aes(threshold, P_Metamodel, color = "Metamodel"), size = 1) +
geom_line(aes(threshold, P_Cardiff_model, color = "Cardiff model"), size = 1) +
geom_vline(xintercept = 20000, linetype = 2, size = 1, color = "grey") +
ylab( "Probability cost-effectiveness") +
xlab( "Cost-effectiveness threshold") +
theme_minimal() +
scale_color_manual(name ="", values = c("Metamodel" = "blue", "Cardiff model" = "black")) +
scale_y_continuous(limits = c(0, 1)) +
theme( text = element_text(size = 14)) +
theme(legend.position="bottom")

## Price dapa variation ##

M <- 1000

N <- 10000

price_met <- 18.26

price_dapa <- seq(0,1000, length.out = M)
price_SU <- 33.46

weight <--3.3

sim_eff <- matrix(NA, nrow = N, ncol = M)
sim_costs <- matrix(NA, nrow = N, ncol = M)
ICER <- matrix(NA, nrow = N, ncol = M)
for (jin 1:M) {
for (iin 1:N) {
mu <- ¢(
(postSalphakEl[i] + postSbetaE_weight[i] * weight),
(postSalphaC[i] + postSbetaC_weight[i] * weight +
postSbetaC_dapali] * price_dapal[j] + postSbetaC_SU[i] * price_SU + postSbetaC_met[i] *
price_met))
Sigma <- matrix( c( postSsigmali,1]22, postSRho[i,1,2]*postSsigmali,1]*postSsigmali,2],
postSRholi,1,2]*postSsigmali,1]*postSsigmali,2], postSsigmali,2]*2 ), 2, 2)
sim <- mvrnorm(1, mu, Sigma)
sim_eff[i,j] <- sim[1]
sim_costs[i,j] <- sim[2]
ICER[i,j] <- sim[2] / sim[1]
}
}

mean_costs <- apply(sim_costs, 2, mean)

ci50 <- apply(sim_costs, 2, PI, prob = 0.5)
¢€i90 <- apply(sim_costs, 2, Pl, prob = 0.90)

pred <- data.frame(price_dapa = price_dapa,
mean_costs = mean_costs,
ci50_lower = ci50[1,],
ci50_upper = ci50[2,],



ci90_lower =ci90[1,],
ci90_upper = ci90[2,])

# Figure 12
ggplot(pred) +

geom_line(aes(price_dapa, mean_costs), size =1) +

geom_ribbon(aes(x = price_dapa, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility
interval"), fill = "blue") +

geom_ribbon(aes(x = price_dapa, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility
interval"), fill = "blue") +

scale_alpha_manual(name ="", values = c("50% credibility interval" = 0.4, "90% credibility interval"
=0.2) )+

ylab("Incremental costs") +

xlab( "Price dapagliflozin" ) +

geom_vline(xintercept = 459.85, linetype = 2, size = 1, color = "grey") +

geom_hline(yintercept = 0, linetype = 2, size = 1, color = "grey") +

theme_minimal() +

theme(legend.position="bottom") +

theme( text = element_text(size = 14))

P_costsaving <- rep(NA, M)
P_costeffective <- rep(NA, M)
for (iin 1:M) {
P_costsaving[i] <- sum( ICER[,i]<=0) /N
P_costeffective[i] <- sum( ICER[,i] <= 20000) / N
}

CEAC <- data.frame(price_dapa = price_dapa,
P = c( P_costsaving, P_costeffective ),
source = ¢( rep("cost-saving", M), rep("cost-effective", M) ) )

# Figure 13
ggplot(CEAC) +
geom_line(aes(price_dapa, P), size =1) +
ylab( "Probability") +
xlab( "Price dapagliflozin" ) +
facet_wrap(. ~ source, dir ="v") +
theme_minimal() +
geom_vline(xintercept = 459.85, linetype = 2, size = 1, color = "grey") +
geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") +
scale_y_continuous(limits = c(0, 1)) +
theme( text = element_text(size = 14))

## weight parameter variation ##

M <- 1000

N <- 10000

price_met <- 18.26

price_dapa <- 459.85

price_SU <- 33.46

weight <- seq( -6.6, 0, length.out = M)



sim_eff <- matrix(NA, nrow = N, ncol = M)
sim_costs <- matrix(NA, nrow = N, ncol = M)
ICER <- matrix(NA, nrow = N, ncol = M)
for (jin 1:M) {
for (iin 1:N){
mu <- ¢(
(postSalphakE[i] + postSbhetaE_weight[i] * weight[j]),
(postSalphaC[i] + postSbetaC_weight[i] * weight][j] +
postSbetaC_dapal[i] * price_dapa + postSbetaC_SU[i] * price_SU + postSbetaC_met[i] *
price_met))
Sigma <- matrix( c( postSsigmali,1]*2, postSRhol[i,1,2]*postSsigmali,1]*postSsigmali,2],
postSRho[i,1,2]*postSsigmali,1]*postSsigmali,2], postSsigmali,2]42 ), 2, 2)
sim <- mvrnorm(1, mu, Sigma)
sim_eff[i,j] <- sim[1]
sim_costs[i,j] <- sim[2]
ICER[i,j] <- sim[2] / sim[1]
}
}

# costs

mean_costs <- apply(sim_costs, 2, mean)
ci50 <- apply(sim_costs, 2, PI, prob = 0.5)
€i90 <- apply(sim_costs, 2, Pl, prob = 0.90)

pred_costs <- data.frame(weight = weight,
mean = mean_costs,
source = "incremental costs",
ci50_lower = ¢i50[1,],
ci50_upper = ci50[2,],
ci90_lower = ¢i90[1,],
ci90_upper = ci90[2,])

# effects

mean_eff <- apply(sim_eff, 2, mean)
ci50 <- apply(sim_eff, 2, PI, prob = 0.5)
ci90 <- apply(sim_eff, 2, PI, prob = 0.90)

pred_eff <- data.frame(weight = weight,
mean = mean_eff,
source = "incremental effects",
ci50_lower = ¢i50[1,],
ci50_upper = ci50([2,],
ci90_lower = ¢i90[1,],
ci90_upper =¢i90[2,])

pred <- rbind(pred_eff, pred_costs)
# Figure 14

ggplot(pred) +
geom_line(aes(weight, mean), size = 1) +



geom_ribbon(aes(x = weight, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility
interval"), fill = "blue") +

geom_ribbon(aes(x = weight, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility
interval"), fill = "blue") +

scale_alpha_manual(name =
=0.2) )+

ylab( "Incremental QALYs" ) +

xlab( "Weight increment" ) +

geom_vline(xintercept = -3.3, linetype = 2, size = 1, color = "grey") +

facet_wrap(. ~ source, dir = "v", scales = "free") +

theme_minimal() +

theme(legend.position="bottom") +

theme( text = element_text(size = 14))

, values = ¢("50% credibility interval" = 0.4, "90% credibility interval"

# CEAC
P_costsaving <- rep(NA, M)
P_costeffective <- rep(NA, M)
for (iin 1:M) {
P_costsaving][i] <- sum( ICER[,i]<=0) /N
P_costeffective[i] <- sum( ICER[,i] <= 20000) / N
}

CEAC <- data.frame(weight = weight,
P = c( P_costsaving, P_costeffective ),
source = ¢( rep("cost-saving", M), rep("cost-effective", M) ) )

# Figure 15
ggplot(CEAC) +
geom_line(aes(weight, P), size =1) +
ylab( "Probability") +
xlab( "Weight increment" ) +
facet_wrap(. ~ source, dir ="v") +
theme_minimal() +
geom_vline(xintercept = -3.3, linetype = 2, size = 1, color = "grey") +
geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") +
scale_y_continuous(limits = c(0, 1)) +
theme( text = element_text(size = 14))

# timeline

price_forecast <- read_excel("[...]", sheet = 3) # insert path to price forecast here (table 11)
price_dapa <- price_forecastSprice_dapa

price_met <- price_forecastSprice_met

price_SU <- price_forecastSprice_SU

weight <--3.3

N <- 10000

sim_eff <- matrix(NA, nrow = N, ncol = nrow(price_forecast))
sim_costs <- matrix(NA, nrow = N, ncol = nrow(price_forecast))
ICER <- matrix(NA, nrow = N, ncol = nrow(price_forecast))
for (jin L:nrow(price_forecast)) {

for (iin 1:N) {



mu <- ¢(
(postSalphakE[i] + postSbetaE_weight[i] * weight),
(postSalphaC[i] + postSbetaC_weight[i] * weight +
postSbetaC_dapali] * price_dapal[j] + postSbetaC_SU[i] * price_SU[j] + postSbetaC_met[i] *
price_met[j]))
Sigma <- matrix( c( postSsigmali,1]*2, postSRho[i,1,2]*postSsigmali,1]*postSsigmali,2],
postSRholi,1,2]*postSsigmali,1]*postSsigmali,2], postSsigmali,2]72 ), 2, 2)
sim <- mvrnorm(1, mu, Sigma)
sim_eff[i,j] <- sim[1]
sim_costs[i,j] <- sim[2]
ICER[i,j] <- sim[2] / sim[1]
}
}

mean_costs <- apply(sim_costs, 2, mean)
¢i50 <- apply(sim_costs, 2, PI, prob = 0.5)
¢i90 <- apply(sim_costs, 2, Pl, prob = 0.90)

pred <- data.frame(date = price_forecastSdate,
mean_costs = mean_costs,
ci50_lower = ¢i50[1,],
ci50_upper = ci50([2,],
ci90_lower = ¢i90[1,],
ci90_upper =¢i90[2,])

# Figure 16
ggplot(pred) +

geom_line(aes(date, mean_costs)) +

geom_point(aes(date, mean_costs)) +

geom_ribbon(aes(x = date, ymin = ci50_lower, ymax = ci50_upper, alpha = "50% credibility
interval"), fill = "blue") +

geom_ribbon(aes(x = date, ymin = ci90_lower, ymax = ci90_upper, alpha = "90% credibility
interval"), fill = "blue") +

scale_alpha_manual(name ="", values = ¢("50% credibility interval" = 0.4, "90% credibility interval"
=0.2) )+

ylab("Incremental costs") +

xlab( "Date") +

geom_hline(yintercept = 0, linetype = 2, size = 1, color = "grey") +

theme_minimal() +

theme(legend.position="bottom") +

theme( text = element_text(size = 14))

P_costsaving <- rep(NA, nrow(price_forecast))
P_costeffective <- rep(NA, nrow(price_forecast))
for (i in 1:nrow(price_forecast)) {
P_costsaving[i] <- sum( ICER[,i]<=0) /N
P_costeffective[i] <- sum( ICER[,i] <= 20000) / N
}

CEAC <- data.frame(date = price_forecastSdate,
P = c( P_costsaving, P_costeffective ),



source = ¢( rep("cost-saving", nrow(price_forecast)), rep("cost-effective",
nrow(price_forecast)) ) )

# Figure 17
ggplot(CEAC[CEACSsource == "cost-saving",]) +
geom_line(aes(date, P), size = 1) +
ylab( "Probability cost-saving") +
theme_minimal() +
geom_hline(yintercept = 0.5, linetype = 2, size = 1, color = "grey") +
scale_y_continuous(limits = c(0, 1)) +
theme( text = element_text(size = 14))

HH### Section 6.2.4: 6.2.4. (un-)normality of the original model’s ditribution ####

#1

rho <- 0.5

X <- mvrnorm(1000,
mu = ¢(0.5, 2500),
Sigma = matrix( ¢(0.372, 0.3 * 2500 * rho, 0.3 * 2500 * rho, 2500”2), ncol = 2
)

dfl <- data.frame(effects = x[,1],
costs = x[,2],
sim=1)

#2

rho <--0.5

X <- mvrnorm(1000,
mu = ¢(0.5, 2500),
Sigma = matrix( ¢(0.372, 0.3 * 2500 * rho, 0.3 * 2500 * rho, 250072), ncol = 2
)

df2 <- data.frame(effects = x[,1],
costs = x[,2],
sim =2)

#3

x <- matrix(NA, nrow = 1000, ncol = 2)

x[,1] <- rnorm(1000, 0.5, 0.4)

x[,2] <- rnorm(1000, x[,1] * 2000, (exp(x[,1])) * 1000)
df3 <- data.frame(effects = x[,1],

costs = x[,2],
sim = 3)

#a



random = runif(1000, 0, 1)

x <- matrix(NA, nrow = 1000, ncol = 2)

x[,1] <- rnorm(1000, 0.4, 0.3)

X[,2] <- rnorm(1000, x[,1] * 1000 + ifelse(random < 0.6, 0, 1) * 5000, 1000)

df4 <- data.frame(effects = x[,1],
costs = x[,2],
sim = 4)

df total <- as.tibble(rbind(df1, df2, df3, df4))

# Figure 18
ggplot(df_total) +
geom_pointdensity(aes(effects, costs), size = 1.5, alpha = 1, show.legend = FALSE) +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
facet_wrap(. ~ sim) +
theme_minimal() +
theme( text = element_text(size = 12)) +
xlab( "Incremental effects" ) +
ylab( "Incremental costs" )



