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Abstract

The second wave of Covid-19 in The Netherlands lasted from September 2020 to June 2021, leading to
11,000 excess deaths in the population. This thesis aims to estimate the true health burden of the pandemic,
through calculating the Years of Life Lost and Quality Adjusted Life years Lost in the population due to
Covid-19. It also aims to estimate and compare the effect of mitigation strategies on health outcomes using
a Susceptible-Exposed-Infected-Recovered model. The health outcomes of these scenarios, measured in
deaths, are then converted to Years of Life Lost and QALYs Lost using the average estimates derived from
the original scenario. The main findings from the research were that in total there were 77,000 Life years
Lost and 50,000 QALY Lost in the population during the second wave. The health burden was mainly con-
centrated amongst the elderly population aged 70 and above, while the health burden amongst the younger
population was relatively higher in the second wave compared to the first wave. The forecasted scenarios
showed that the implementation of a lockdown by the Dutch government in the second wave resulted in
60,000 QALY being gained compared to no lockdown. It also showed that an earlier lockdown, if imple-
mented would have resulted in 22,000 QALY's being gained.
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1 Introduction

“With Covid-19, we’ve made it to the life raft. Dry land is far away, and science is our only exit strategy”

— Marc Lipsitch

The COVID-19 Pandemic has been ongoing for more than 2 years since its inception in January 2020.
As the disease has progressed and new variants have emerged, countries have shifted their approach of
intensive lock downs towards targeted vaccination efforts to combat the disease. At the time of writing
this paper, countries are beginning to adopt leniency in measures to combat the pandemic. Yet, we are still

seeing waves of Covid-19, with an unprecedented loss of life still occurring in parts of the world.

Improving Public health has always been elemental to the goals of government health policy. With
COVID-19, this became ever-significant as governments all over the world were at the forefront of contain-
ment of the disease within their sub-populations. This level of involvement also resulted in backlash from
the public, who perceived these public health measures as restriction of their freedoms, leading to public
protests that were seen worldwide. A pandemic can play out in different ways depending on how people,
governments, and other institutions respond to it. Governments have been criticised for not doing enough

or even doing too much in this pandemic.

Throughout this pandemic, countries have adopted measures ranging from different levels of stringency.
On one spectrum, China’s stringent Zero-COVID policy which was declared as a "Top objective of the coun-
try", emphasized complete zero tolerance of Covid-19. The actions of the policy resulted in regular city
lock downs, mass testing of populations in infected provinces/cities and strict quarantine periods for in-
fected people. On the other side of the spectrum, we had countries such as Sweden that did not enforce any

strict lockdowns or many measures in their populations (Normile, 2021).

The Oxford stringency index measures government responses since the beginning of the pandemic,
helping policymakers to understand the effect of policies on disease spread. Responses are measured us-
ing a containment and health index (CHI) which groups 19 indicators in the themes of closure, health and
economic support. A paper by Hale et al. (2021) which analysed these measures showed that there was a
high degree of congruity in the responses of governments during the first months of the pandemic. These
responses however, diverged after the first wave, as there was more variability in the timing and stringency

of the policies that governments sought to re-impose.

These strict measures were either supported or denounced by scientists. Kulldorff et al. (2020) took a
stance against restrictive measures such as lockdowns to control community spread. It instead advocated
for a "Focused Protection" of older demographics who were more likely to die from COVID-19 or suffer
long term complications.Their declaration suggested that countries should head towards the herd immunity
of their population instead of lock downs and measures. This was opposed by another group of scientists

through Alwan et al. (2020), who argued that herd immunity lacked evidence to support that natural in-



fection from the virus would provide lasting immunity. They suggested that implementing these restrictive
measures would lead to a reduction in short term COVID-19 induced mortality and compromise the treat-

ment of several acute and chronic conditions, with long-lasting-negative repercussions.

It is thus important to realise, what are the resulting actions of these public health measures and how can
we evaluate their success? Quantifying the health impact of policies can help in measuring the positive or
negative impact these policies have on population health. It also helps is assessing whether the entire health
of the population or certain sections are affected. Approaches to quantify health impacts include estimat-
ing number of lives lost, number of life years lost, expected increase/decrease in number of incidents, and
Quality adjusted Life Years (QALYS) lost. Calculating QALY lost is preferable as it combines the impact
on the loss of life years and the impact on quality of life into a single measure. it also enables comparisons

ac cross different disease areas (Whithead and Ali, 2010).

This thesis thus aims to evaluate the related Quality-adjusted life years (QALYSs) lost for the actual sce-
nario and the Covid-19 outcomes under different mitigation strategies. The following research question(s)

are proposed to address this issue.

(a) What is the number of QALYs lost in the actual COVID-19 measures adopted in the Netherlands

during the second wave of Covid-19?

(b) What are the health outcomes due to COVID-19 from imposing different mitigation strategies?

There has existed misinformation and mistrust of policies implemented by the Dutch government to
combat Covid-19, namely a law that obligated to use of face masks and a lockdown imposed by the gov-
ernment during the second wave.The most controversial policy that was to be implemented perhaps in the
Netherlands was the ‘3G system’ which required citizens of The Netherlands to have either proof of vacci-
nation, recovery from Covid-19, or a negative test result. With repercussions surrounding these measures,
and several other steps taken by governments around the world, it is important to assess and analyse “What-

if scenarios’ if governments had acted/ not acted on implementing such strategies.

This research thus expels falsifications surrounding the need for such measures in society to combat
infectious diseases. Evidence from this paper can be used to inform governments and health authorities
about the effects of public health policies in combating infectious diseases. This research also supports an
inquiry into the health mortality burden during the second wave of Covid-19 in the Netherlands. A recent
article by CBS (2022) discusses the excess mortality in this period, indicating that there were nearly 11,000
deaths during this period. This thesis expatiates on these excess deaths by measuring crude estimates of
mortality in the form of YLL and QALYs Lost, and then standardizes these estimates for the underlying
health of the population.



A brief description of the structure of the thesis is as follows. First, the Theoretical Framework provides
background about various themes this Thesis addresses. Information related to Covid-19 and epidemiologi-
cal modelling is first presented, followed by the application of these models in previous research published.
This section then delves into the theory and previous research around using YLL and QALY Lost to eval-
uate mortality. The next section, Methodology and Strategy section also explains how these QALY lost is
calculated using a standardised life table approach. This section also provides the tools estimate the effect
of mitigation strategies in using a SEIR model. The Results section first provides a detailed analysis of the
health burden during the second wave in The Netherlands. it then compares the outcomes of these scenarios
with the actual scenario using QALYs Lost as the main criterion. The Discussion and Conclusion section
aims to then answer the important research question in this section, and providing policy implications and

further recommendations for research.



2 Theoretical framework
2.1 Taxonomy and Pathology

Covid-19 is an infectious disease caused by the SARS-CoV-2 Virus. The virus spreads person-to-person
through respiratory droplets and aerosols. Infection from the virus can lead to anything ranging from a
mild respiratory illness to becoming seriously ill and deceased. The virus first appeared in a large cluster in
Wuhan, China in December 2019 and rapidly spread around the world, leading to an estimated death toll as

noted by Wang et al. (2022) of 18.2 million people.

SARS-CoV-2 or COVID-19 is more transmissible than epidemics that have been eradicated in the past,
such as the severe acute respiratory syndrome (SARS) and the Middle East respiratory disease (MERS).
The added difficulty with COVID-19 is its protracted incubation period, which can be as long as 1 to 14
days. During the time of incubation, infected people while having no symptoms, are contagious. As a result,
those who are vulnerable might not be are infected, making it difficult to quickly identify them and track
down their contacts. The unpredictability, transmission, and mutation are some of the major aspects that
define COVID-19 as a persistent, uncharted, and changing pandemic. The mutation of the virus resulted
in multiple variants, that have been documented worldwide. During the second wave, the Alpha variant

(B.1.1.7) and the Delta variant (B.1.617.2) were most dominant in The Netherlands.

2.2 Infectious Disease Modelling

Mathematical models are often used in epidemiology to represent a way to investigate factors that affect
disease spread and to predict the magnitude of an epidemic within a population. Such models offer public
health planners to make predictions about the impact of emerging disease, as well as the effects of inter-
ventions. As noted by Jit and Brisson (2011),infectious disease models are also of interest for economists

as they can estimate the effects of an intervention and the associated costs and outcomes of that intervention.

The effect of interventions such as vaccination and social distancing can be modelled in these infectious
disease models, and the related costs associated with the interventions can used to make economic deci-
sions. The merging of health economic modelling and infectious disease modelling therefore proves useful
for resource allocation decisions and brings a ’responsible’ analytical approach as noted by Anonychuk
and Krahn (2011). Governments and other public institutions play a big role in defining the public health

policies or more specifically the mitigation strategies used to combat an infectious disease.

Specifically, to slow the pandemic and bring infections under control, most governments have imple-
mented many non-pharmaceutical interventions (NPIs) such as social distancing, school and university
closures, infective isolation or quarantine, banning public events and travel, etc. The type of policy and
timing of the policy is essential in decreasing the number of infections and deaths (Cao et al., 2021). Since
the start of the pandemic, there has been important research assessing the effect of these policies using

epidemiological models.



These models can either be stochastic or deterministic models. Deterministic models predict a unique
outcome with certainty, determined by the parameters in the model. Stochastic models allow for random
variation in the outcomes, predicting them with uncertainty. The outcomes generally tested in these models
are the number of infectious persons, number of deaths or in some cases the growth rate of the virus. An
example of such a model is a Susceptible-Exposed-infected-Recovered (SEIR) model, which provides the
most practical way of estimating how an epidemic behaves in a closed system, where the population can be

compartmentalised into different disease states.

To represent the initial COVID-19 epidemic in China,Tang et al. (2020) used a generalized SEIR model
which additionally included compartments of Asymptomatic infections and Hospitalisations. They found
that Intensive contact tracking, followed by quarantine and isolation, can successfully lower the reproduc-
tion number and transmission risk. A paper by Berger et al. (2020) published in Review of Economic
Dynamics, uses a SEIR model to study how virological and serological testing can affect the number of
deaths and economic output. Their results find that weekly testing leads to more lives being saved, lower

output losses and lower costs.

Hsiang et al. (2020) estimate the effect of anti-contagion policies on the growth rate of COVID-19 in-
fections. They used reduced econometric techniques to study the effect of changes in policy on the average
daily growth rate in infections. In absence of policy actions, The authors initially use a simple SIR model to
generate infections before and after. They then use a first difference approach to estimate the causal effect
of the policy on the change in infections. Their results find that early infections of COVID-19 exhibited

growth rates of nearly 38 percent per day.

A paper by Ferguson et al. (2020) examined the efficacy of non-pharmaceutical interventions (NPIs)
targeted at lowering population contact rates and minimizing virus transmission. They use a individual
based simulation model to study two countries: the United Kingdom and the United States. The research
indicates that the use of numerous treatments in combination is more likely to have a significant impact
on transmission. An optimal mitigation policy involving home isolation of suspected cases and the social

distancing of populations at high-risk may reduce the number of deaths by half.

Other research in this area is focused on evaluating the impact of policies using statistical methods in-
stead of epidemiological models. A paper by Flaxman et al. (2020) uses a Bayesian mechanistic model that
links the cycle of infection to reported mortality. The paper aims to determine if interventions were effective
in bringing the reproductive number(R;) to values below 1. They find in their results that Lockdowns had
an identifiable large effect on transmission, reducing the R, by 81 percent. They also find that across 11

countries, 3.1 million deaths were averted due to NPIs during the first wave of the pandemic.

A paper by Liu et al. (2021) studies the impact of NPIs on COVID-19 transmission across 130 countries,



regressing the time varying reproduction number against the different NPIs. They find that there is strong
evidence for an association with school closures and movement restrictions and a reduced reproduction
number. Similar research by ? finds that a combination of physical distancing measures, if implemented
early, can be effective in containing COVID-19—Other restrictions such as working from home, and a
full lockdown in the case of a probable uncontrolled outbreak also significantly decrease the reproductive

number.

2.3 Health impact of COVID-19

While the burden of an epidemic is estimated by the number of deaths, this may be underestimated in the
case of Covid-19. Official death tolls do not account for those individuals who did not test positive before
dying and there are often lags in the data due to delays in processing deaths certificates. Accounting for the
problem involves estimating the excess mortality, which compares excess deaths in a given period to the
historical baseline deaths from recent years during that period. In an article by the Economist (2021) using
a similar methodology to calculate excess mortality, it was found that there have been greater than 7 million

deaths worldwide during 2020 alone.

Calculating excess deaths is a crude measure of estimating the health impact as it only includes mortal-
ity but not the morbidity. Years of Life lost (YLL) Quality adjusted life years (QALYs) lost provide a truer
estimate as it looks at the number of years that the deceased would have lived but for the cause of death.
As Ugarte et al. (2022) note in their paper, the case fatality rate of COVID increases with age and mainly
affects individuals over 80 years old. COVID-19 not only affects the elderly but also is a cause of premature

mortality in the elderly.

Briggs et al.(2020) provided the initial calculation to estimate QALY's lost from COVID-19 mortality
data using Life expectancy tables for 5 countries. Life tables models a probability of developing a given
disease at different ages and the respective mortality rates once a disease is acquired. The increased risk of
COVID-19 mortality amongst those with comorbidities such as diabetes, COPD and heart disease is cap-
tured along with factors such as age and sex. In their paper, the authors find that a substantial QALY's and

life Years are lost even for older persons with high levels of comorbidities.

A report on the expected outcome of vaccination strategies by Ainslie et al. (2021) looks at the disease
burden due to Covid-19 and calculates the expected impact of vaccination on health outcomes. To calculate
the impact, the authors use an age-structured SEIR model which included compartments for vaccinated
individuals, hospitalisations, intensive care admissions, and deaths. The results of the simulation model
suggests that regardless of vaccination strategy, implementing a COVID-19 vaccination program leads to
fewer infections, deaths, life years lost and Disability Adjusted Life years (DALYSs) lost. The strategy with
the best outcomes was to vaccinate from old to young which would result in 5,307 deaths and a total of
82,557 Life Years being lost. Similar research was done by Ferranna et al. (2021) for the U.s, using iden-

tical the methods as Ainslie et al. (2021). According to their findings, prioritizing essential workers is an



effective way to decrease the number of cases and years of life lost. However in most scenarios, prioritizing

older people will result in the biggest drop in fatalities.

Calculation of YLLs and QALY lost were also done for The Netherlands by Wouterse et al. (2020)
and Wouterse et al. (2022) respectively using Life Expectancy Tables. The methods used in the papers
focused on estimating YLLs and QALYSs lost for The Netherlands by adjusting for the underlying health of
the population and additionally accounted for those living in nursing home facilities, as many COVID-19
related deaths occurred in this setting. Only looking at comorbidities in the nursing home population does
not capture their poor health and low survival. Their results showed that an average of 8.76 and 8.69 Life
Years were lost for men and women respectively. The number of average QALY lost for men and women

were 7.35 and 6.85 respectively.

A paper by Quast et al. (2022) done for the US measuring YLLSs using multi-state life tables found that
on average 9.2 YLLs per death. A study byReif et al. (2021) also done for the US further incorporates
ethnicity and a multitude of comorbidity factors prevalent amongst Covid patients to measure YLLs and
QALYs lost. Instead of using life tables, the authors use a microsimulation model which predicts the health
outcomes at an individual level. Using this approach helps to fully assess the mortality burden and look
into sections of the population losing the most life years. On average 12.2 YLLs and 9.84 QALYs lost
per person in the US in 2020, with the greatest toll amongst black and Hispanic men over 65 years old.
Compared to Life tables, Micro simulation models are flexible in modelling interaction between diseases
and can be used for various scenario analysis. The drawbacks of this method include the increased inten-
sity of computation (Briggs et al.,2016). Research in this area can also extend to papers such as Basu and
Gandhay (2021) which use a more individualistic approach, by looking at the QALY's gained by averting a
single COVID-19 infection. The authors account for losses in QALY's experienced by a patient through a
COVID-infection and losses experienced by family members. They find that 0.061 QALY can be averted

for a single infection.
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3 Methodology and Strategy

This section explains the methodology used to derive the YLLs and QALY lost during the second wave of
the pandemic and for the different mitigation scenarios. Calculating the health outcomes under the differ-
ent scenarios first requires predicting the number of infectious persons using a deterministic SEIR model.
These infections are then translated to deaths using an infection fatality ratio (IFR). The final step involves
estimating the total YLL and QALYSs Lost for these scenarios. This will be derived from an estimate of
YLL and QALY Lost for the actual scenario, using a standard life table approach.

Data used for this research was derived from different sources. Epidemiological data related to spread of
COVID-19 in The Netherlands was derived from The National Institute for Public Health and the Environ-
ment (RIVM). Public Data sets available from RIVM included the number of infectious persons per day, the
daily effective reproduction number (R;) and vaccine coverage. These data sources were used to determine
parameters in the SEIR Model. To calculate the YLLs and QALYSs lost, multiple data sources were used.
Excess mortality data derived from CBS (Statistics Netherlands) was used to calculate the mortality burden
during the second wave. Data related to life expectancy for the Dutch population was also derived from
CBS for the year 2020, and then adjusted for comorbidities using estimates from scientific papers. Data
related to Quality of Life, proportion of commodities were derived from academic papers and are discussed

further in detail later in this chapter.

3.1 Estimation of SEIR Model

A basic SEIR(Susceptible- Exposed-Infected-Recovered) model can be used to predict the number of peo-
ple in each of the compartmental states. Differential equations appearing as derivatives are used to describe
movements between these states. The SEIR model structure is assumed with individuals transitioning be-
tween compartmental states once each day. The epimodels package from STATA® created by Radyakin
and Verme (2020) is designed for specifying the exogenous parameters of the epidemic. Initial conditions
based on transition between these compartmental states will be used to generate the number of infections.

A diagrammatic representation of a SEIR Model is shown below in Figure 1.
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Figure 1: SEIR Model

N represents the total population. At the beginning of an epidemic, the total population(N) is equal
to the Susceptible population S(t). During an epidemic, the total population size is divided into different

compartmental states, where:(N)=S + E+ 1+ R.

S(t) is the Susceptible population i.e. the number of people not yet infected by the virus but can poten-
tially become infected by the virus. At the start of the pandemic, the entire population was susceptible to
the virus. E(t) is the Exposed population who are exposed to the virus but are not yet contagious. This is
during the incubation period of the virus. I(t) is the Infected population i.e. people confirmed to have been
infected and can potentially transmit the virus to others. R(t) is the Recovered population i.e., affected by

COVID-19 anymore. This model assumes that once recovered, a person cannot be infected again.

In order to understand how individuals move between these compartmental states, transition probabili-
ties between each state are assumed. f is the transmission rate from a Susceptible population to an Infected
population, which has not been detected. It is measured as 1/ average period an infectious person makes an
infectious contact (days). o is the Transmission rate of confirmed infected people from the exposed popu-
lation. This is estimated as 1/ average incubation period of the virus. Vv is the Vaccination rate (proportion
of the susceptible population undergoing complete vaccination each day). € is the vaccine efficacy (relative
risk reduction of infection achieved through vaccination). To measure S, E, I, R over time, a system of

differential equations are used to differentiate these four variables.

ds BS(0)1(7))

=N —ves() M
dE _ BS(1)I(1))
E_T_GEO)) 2
dl
o = ()~ 11() ®
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In eq.1, the change in the Susceptible population is derived as the number of the persons moving from
the susceptible population S(t) to the exposed population E(t) and the number of persons moving from the
susceptible population to the recovered population R(t), subtracted from the overall population (N). In eq.2,
The change in the exposed population comprises of individuals moving to the infected population I(t), sub-
tracted from the persons currently in the Exposed population. In eq.3, The change in the infected population
comprises of individuals moving to the recovered population R(t), subtracted from the persons currently in
the Infected population. In eq.4, The change in the Recovered population comprises of individuals moving
to the recovered population from the susceptible population and individuals moving from the infected pop-

ulation to the recovered population.

Ry is the basic reproduction number or the expected number of cases directly generated by one case in
the population. It represents the number of secondary infections generated at the beginning of an epidemic
when there are no measures present. Locatelli et al. (2021) estimated the Ry for Covid-19 at the start of
the pandemic in Europe to be 2.2. 0 is the initial contact rate at the beginning of an outbreak and can be

expressed as function of the basic reproduction number and the infectious period (1/7), represented in eq.5

Ro=Bos(1/7) (5)

Similarly, Rt is the reproduction number that changes at any time during an epidemic. It is important to
define the Rt which changes dynamically in response to mitigation strategies and public health interventions.
The value of R must fall below 1 for case numbers to decline. ¢ is the contact rate at time (t) during the
outbreak and can be expressed as function of the effective reproduction number (R;) and the infectious

period (1/y), represented in eq.6.

Rt = Br«(1/y) (6)

The basic reproductive number (Rg) also provides information on the level of herd immunity that has
to be achieved in order for the reproduction number to fall below 1. As an approximation, the proportion
of population that should be immune is based on the Ro estimate we obtained from Locatelli et al. (2021).
The proportion of population for transmission to be halted is 55 percent. This number gives us a target for
vaccination programs, which is another parameter included in the SEIR model. It is assumed that suscepti-

ble individuals can move to a recovered state through vaccination, without being infected by the virus. Vv is

13



the rate of complete vaccination of individuals per day. € is the efficacy of the vaccine. These values can be
obtained from a recent report published by RIVM, which uses an SEIR model to determine the incidence of
infections and hospital admissions specifically under different vaccination strategies between 1st February
2021 and 1st September 2021. The main findings of this report found that initiating a vaccination program,
regardless of the vaccination strategy, resulted in fewer new infections, new cases, hospital admissions, IC

admissions, and new deaths (Ainslie et al., 2021).

3.2 Derivation of transition probabilities

Once, we have defined the various parameters of a SEIR model, the next step involves providing estimates

to these parameters.

The Bt is the transmission rate of the virus, which is largely influenced by the number of contacts an
infectious individual makes. It is also impacted by the mitigation policies put into place by governments,
as discussed in detail later in this chapter. The transmission rate B¢ is also closely related to the effective
reproductive number (R;) estimates. Using published RIVM Covid-19 data, the average R, ranged from
0.74 to 1.45 during 2020-21. This would mean that the 3¢ ranges from 0.078 to 0.152 in the course of the

pandemic, as ff is estimated as a function of Rt and .

The average time an infectious individual remains infectious can be assumed to be 9.5 days. The value
for y assumed in this model is therefore 1/9.5 or 0.105. The infectious period of Covid-19 is assumed as
10 days for this study. An early estimate from RIVM about the incubation period suggested on average 5-6

days, which can be used to model . Thus, the assumed is 1/5 or 0.2.

Since The Netherlands started vaccinating individuals at the start of 2021, we can assume an average
vaccination rate(v) observed per day, based on the total archived RIVM second vaccination dose figures
between January and July 2021. It is calculated that around 56,000 people were (fully) vaccinated each day,
which is around 0.0032 percent of the population each day. A vaccine with an efficacy(€) of 90 percent is
assumed. Thus, 0.027 percentage of the Susceptible population moves to a recovered state each day after
vaccination. Table 1 below shows the parameters we assume as inputs to estimate a SEIR Model, using the

db episeir command on STATA.

Another important factor to consider is the size of the Susceptible and Infected populations at the start
of the second wave. On 01/09/2020, there were close to 19145 infected individuals in the population, de-
rived from a RIVM dataset estimating the number of infectious persons in the population every day. It was
estimated that 2.8 percent of the Dutch population was infected during the first wave based on Vos et al.
(2021). The size of the Susceptible population is thus reduced to 15.6 million people at the start of the

second wave.

14



Table 1: Transition probabilities assumed in the SEIR Model

Parameter Value Source
B(beta) 0.078-0.152 -
Y(gamma) 0.105 Byrne et al. (2020)
o (sigma) 0.2 RIVM (2022)
v(nu) 0.003 Own Assumption
£(epsilon) 0.92 RIVM (2022)
Susceptible Population 15.6 million  Vos et al. (2021)
Infected Population 19145 RIVM (2022)

3.3 Impact of Mitigation strategies

In 2020-21, The Netherlands used a combination of mitigation strategies that included social distancing,
school closures, partial travel restrictions, mask-wearing in all public spaces, and vaccination. In order to
estimate the impact of measures on the number of infections, it is first important to assume a counterfactual
situation in which these measures do not take place. Thus, the main method of estimating impact is through
the number of contacts a person makes at time . This is also the 3, we assume in the SEIR model, which is
the beta parameter derived at time 7. Thus when estimating the mitigation scenarios, we make assumptions

about the value of ;. To derive the impact of these policies, the following methods are used.

To forecast an unmitigated pandemic, without any measures, the baseline value of Ry is used at the start
of the pandemic, before any measures were introduced. The value of the baseline, derived from Locatelli

et al. (2021) is 2.2. Estimating f3 as a function of R,, the value of f§ is 0.232.

To forecast a scenario without any lockdown, we look at the value of Rt at the start of the second wave
which was 1.35. At the start of the second wave, there were only measures in place to restrict movement of
individuals. Assuming that no further measures were put in place, we can estimate the effect of not having
a lockdown as the value of 8 of 0.142 at the start of the second wave. This scenario will include an addi-
tional sub-scenario where vaccination is introduced at the start of 2021. In the actual situation, completer
vaccination of began only around early February, as the vaccination program started in early January. For
the purpose of this scenario however, we assume that persons in the Susceptible population begin complete

vaccination from the 1st of January onwards.

The final scenario tested is the implementation of an early lockdown. For this scenario, an estimate
that the (Ry) is reduced by 0.296 is assumed from Levelu and Sandkamp (2022). In this working paper, the
authors estimate the marginal effects of NPIs on the reproduction rate (R)) using a fixed-effects regression.
For example, school closures alone can lead to a decrease in the R; by 0.079, ceteris paribus. Assuming
that a complete lockdown includes School closures, Work closures, Restriction on gatherings, Stay at home
requirements, ban on international and domestic travel, the effect of a lockdown on the R; is 0.296, ceteris
paribus. This estimate is also close to the what ? derive in their paper (-0.3186) for the impact of a lockdown

on the R;. Estimating f as a function of Ry, the value of  is assumed as 0.11 in the model. The intervention
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is made 45 days after the start of the second wave on 15/10/20. It is also assumed in this scenario that the

vaccination program begins on 1st of January.

Table 2: Assumptions for each mitigation policy

Policy B Source

Unmitigated Scenario 0.232 Locatelli et al. (2021)

No Lockdown Scenario 0.135 Assumption made from value of R; on 01/09/20
Early lockdown Scenario 0.110 Levelu and Sandkamp (2022)

3.4 Estimating number of deaths due to COVID-19
3.4.1 Estimating deaths from the SEIR Model

While the SEIR Model gives us the estimate of infections, translating infections into deaths involves using
an Infection-Fatality Ratio(IFR). The IFR is the percentage of infections that result in deaths in the popu-
lation, as represented in eq.7. The IFR may only enable us to arrive at a crude estimate of deaths as it is
based on historical deaths due to COVID-19. Nevertheless it enables us to effectively compare mortality

estimates across different scenarios we estimate.

Number of deaths from a disease
Number o finfected individuals

infection fatality ratio = * 100 )

Since the IFR varies due to geographical location and the population age structure, for simplification,
we can use the age-standardised IFR for The Netherlands derived from cov (2022). The age-standardized
IFR during the second wave of Covid-19 was estimated to be 0.482 percent during the wave. To remove
the impact of vaccination on IFR during this period, the authors exclude age-specific observations of sero-
prevalence and deaths that occurred after vaccines were introduced. These estimates of IFR can therefore
be applied to the infections derived from the SEIR model for the various scenarios, to estimate the deaths

from those respective scenarios.

3.4.2 Estimating excess deaths from actual COVID data

For the scenarios derived from the SEIR model, the total deaths are estimated after applying the IFR to the
total infections. For the actual Covid-19 situation in The Netherlands however, excess mortality data from
CBS (2022) during the second Covid-19 wave will be used. The data was extracted from early September
till the end of June as COVID-19, generating a two-week lag from the start of the second wave to account
for the 2 week time lag between COVID-19 case and deaths (Testa et al., 2020). A total of 10898 excess

deaths were estimated during this in the time period.
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The data available for excess mortality is distributed across 3 age groups i.e. 0-64; 65-79; 80 years
and above. The excess deaths obtained from CBS will be further split across 5-year groups based on the
age patterns of COVID-19 deaths observed by the National Institute for Public Health and the Environment
(RIVM). The excess mortality data is then estimated by gender based on the proportion of actual deaths by
gender due to COVID-19 for the same respective week. These age proportions are also available by gender,

enabling us to differentiate COVID-19 mortality at different ages by gender.

As shown in the Figure 2 below, excess mortality increases in the first two phases of the second wave
(Sep 2020-Jan 2021) when Covid-19 infections were at the highest in the population. As described in an
earlier section, the excess mortality increases due to a higher death rate amongst 80 years or older who are
higher. Only for this age group can it be observed that more women die than men. This can attributed to the
fact that women have a longer life expectancy than men, thus more women live above 80 years old. In the
second phase of the second wave (Jan 2021- June 2021), the death rate amongst 80 years or older decreases
leading to negative excess mortality. After this point however, the excess mortality amongst men remains
higher than women until the end of the wave. It can also be noticed the deaths in the 0-64 age group remain

high even in the last two phases of the second wave.
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Figure 2: Excess Mortality in The Netherlands during 2020-2021 by age and gender

3.5 Estimating YLLs and QALYs lost
3.5.1 Estimating LE using a standard life table approach

The next part shifts to estimating the Years of Life Lost (YLL) and Quality Adjusted Life Years (QALYs)
lost during the second wave of the pandemic. The approach is derived from that of Wouterse et al. (2022)

and Briggs et al. (2021), using standard life tables accounting for the underlying health of the population.

Calculating life expectancy is a simple approach used to compare mortality at different ages over time

for different sub-populations. The life expectancy for the Dutch population was derived from CBS Statline
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(2022) which publishes period life expectancy tables. Life tables for male, female and the overall popula-
tion in the year 2020 were extracted for Men and Women for the ages 0 to 99, displayed in Appendix A.

The approach to estimating Life Expectancy first starts by defining the probability of dying of any cause
q(x) between the ages x and x+1. q(x) is calculated as the observed number of deaths in the selected period
per 100 thousand of the average (actual) population of the same age and sex. From this we can calculate

the number of persons at agex surviving to agex+1 > 1 as 1(x).

1(x) = 100000 * - 1—q(a) (8)
=1

a

We can then calculate L(x) i.e., the life years lived between ages x and x+1. This is done for all age
groups until a maximum life expectancy is assumed to be 99 years, yielding the life expectancy at each
age group for the Dutch Population. T(x) is defined as the total number of person years lived above age x.

Finally, Life Expectancy (LE) at age x is calculated as the ratio between T(x) and 1(x), as represented in

eq.11.
Lx)= W )
99
T(x) =} L(w) (10)
LE(x) = ?(%) (11

3.5.2 Adjusting for survival and underlying health

COVID-19 deaths are mostly concentrated in older individuals with pre-existing conditions such as COPD,
Diabetes, Chronic Heart Disease, and amongst the remaining population. Under the RIVM COVID-19
death comorbidity prevalence rates published as a monthly report, 27.8 percent had diabetes, 25.5 percent
COPD, and 16.5 percent had chronic heart failure. These proportions were characterized in a monthly re-

port obtained from RIVM (2022).

Besides those with comorbidities, many persons who died of COVID-19 resided in nursing home fa-
cilities. Nursing home inhabitants have disabilities and multiple chronic conditions. Looking at the excess
mortality in nursing homes during this same period, around 50 percent of the total excess deaths can be
assumed to be from nursing homes. This data is obtained from the Ministry of Health, Welfare and Sport,
who provide a weekly estimate of deaths occurring in care homes. Only looking at comorbidities does not
capture their poor health and survival compared to the general population. Hence, living in a nursing home

is listed as a separate condition.
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For nursing homes, already generated figures from Wouterse et al. (2021) are used to calculate the re-
maining life expectancy. These figures were available from ages 65 and above for both male and female.
The data can be found in Appendix B. To adjust for survival for comorbidities, a standardised mortality ratio
(SMR) is used to capture the increased risk of dying due to a given comorbidity. The SMR is defined as the
ratio between the observed death for a disease at age x and the expected deaths without the disease at the

same agex.

The SMR rates for Diabetes and heart Disease are derived from Hoogenveen et al. (2017) and the SMR
for COPD is derived from Hoogenveen et al. (2000). A Web plot Digitizer was used to extract the data from
the graphs depicting excess mortality for the respective comorbidities. The excess mortality estimates are
the same as Standardised mortality rates defined earlier. These graphs showed the variation in mortality for
ages 50-100. For Ages 0-50 a constant rate is assumed, as the prevalence of disease in these age groups is

extremely minimal. These rates are also listed in Appendix C

Ob d death di t age;
SMR(standard mortality rate) = served dedls for lse.ase @ dsei (12)
Expected deaths without disease at age;

Applying the SMR to probability of dying q(x), would risk the probability of dying exceeding one.
Thus the instantaneous death rate i(x) is first estimated, before applying the SMR parameter to estimate the

impact of the pre-existing comorbidity.

i(x) =—Inl—q(x) (13)

We then multiply the SMR of the disease derived for each age with the corresponding Life years lived
between age x and x+1 i.e. L(x). Similar to the method in the previous sub-section, the SMR adjusted Life
Expectancy at age x is calculated as a ratio of the sum of SMR* L(x) to the I(x) at age x. Thus, the number
of life Years Lost per person is value of the remaining life expectancy at age x. Looking at the data again

as a reference, a person with diabetes who died of COVID-19 on average loses 20 life years.

To adjust for differences in health, the quality of life for the different underlying health states are de-
termined. The health states are calculated for different ages, ranging from O to 1, with 0 being poor health
and 1 being perfect health. First, Quality of Life(QoL) estimates for the healthy population were derived
from Janssen et al. (2019) for age group using time-trade off (TTO) to value health utility. These estimates
are available in Appendix D. The estimates of QoL for the various underlying health conditions are derived
from Wouterse et al. (2022) who calculated the EQ-5D values for these comorbidities in the Dutch popula-

tion. The value for diabetes is assumed to be 0.8, representing that diabetic patients have a quality of life
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80 percent of that of a healthy person. The various papers these assumptions are derived from are listed in
Appendix E. Similarly, values for COPD and Heart Disease are 0.73 and 0.63. After obtaining, the SMRs,
the QoL for different ages and comorbidities, the QALE at age a, for health condition 4 can be estimated as

shown in eq.14.

QALE, ), = Y [ qus [J e @Mk | (14)
=G a=1
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4 Results

The first research question to be answered in this thesis was, what were the number of YLLs and QALYs
lost during the second wave of Covid-19 in The Netherlands during 2020-2021. Another subject this the-
sis also aimed to address, were the health outcomes under different mitigation scenarios. To answer these
questions, this chapter first provides an analysis of the QALYs lost as a result of Excess Mortality in the
pandemic using the methods mentioned in the previous chapter. Next, the health outcomes from various
mitigation strategies are forecasted using a SEIR model framework as previously described. The final part
of this chapter is a comparison of the YLLs and QALYs lost of the estimated policy scenarios with the

actual scenario.

4.1 YLLs and QALYs lost in the Netherlands in 2020-2021

To assess the first research question, a number of steps were previously performed to ensure a systematic
analysis of the data. Excess Mortality estimates are used instead of actual deaths to calculate the mortality
burden during the second wave. Calculating Years of Life Lost then involved using standard life tables and
adjusting for comorbidities in the population based on the gender and age distribution of these comorbidi-
ties in the population. Finally it was ensured that Quality of Life at different ages and due to prevailing

comoribidites are adjusted in order to calculate QALY's Lost in the population.

First the YLLs was estimated for men, women. These estimates were then combined to reflect the out-
comes for the total population. The estimate of YLL shows the remaining life expectancy due to Covid-19
based on the underlying health, age and sex of a person. At an individual level, the age and sex of a deceased
person helps determine the Years of Life he/she has lost. At a population level, it helps to determine YLLs
lost in the population. The results from the analysis show that a total of 76900 life years were lost during
this period. That means an average of 7.052 Life Years were lost, assuming there were 10898 deaths in the

population. Figure 3 below shows the distribution of YLLs in the total population.
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Figure 3: Years of Life Lost due to COVID-19 in the Dutch Population in 2020-21

The number of Life Years Lost varied across the population by age group. For age groups 0-20, there
were hardly any Life years Lost, as there were almost no excess deaths in the population arising. For age
groups 20-40, although the excess deaths assumed were close to 40, around 1700 Life years were lost.
Looking at the data of this age class closely, the distribution of deaths amongst the 35-40 age group was
the same as the 20-35 age group. From age group 40 onwards, the Life Years lost starts to exponentially
increase, owing to the increased mortality risk for the general population and increased standard mortality

rate for comorbidities. From ages 40-65, there are more than 19000 Years of Life Lost.

The largest share of YLLs however, occurred in the 70-80 age group, with close to 32000 QALY's being
lost for this age class. Looking at the excess deaths, around 4100 people died in this age class. Alternatively,
the 80-90 group experienced a steep drop in YLL lost but had a slightly lesser estimate of excess deaths of
3312. A total of around 11000 Life Years were lost for this population. This is less than half the number
of YLLs compared to the 70-80 age group. This can be simply explained by the increased proportion of
these deaths occurring in nursing homes and the lower remaining life expectancy associated with deaths in

nursing homes.

When looking at the differences in YLL due to gender, 40260 Life Years are lost for males, whereas
36650 Life years are lost for females. On average 7.027 and 7.086 Life years are Lost for men and women
respectively. This means that totally more Life Years were lost for men in the second wave, but since more
men died than women during the second wave, the average for men was lesser than the average for women.

The estimates are presented in Figure 4 below.
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Figure 4: Years of Life Lost due to COVID-19 in the Dutch Population in 2020-21 by Gender

It is noticeable that more YLLs are lost for females in the 80-90 age group compared to males. This can
also be attributed to the fact that there were more excess deaths in this age category for females compared
to males, with 2709 females and 2175 males deceased in this age category. Particularly during the first half
of the second wave, most deaths also consisted of women in nursing homes during this period. Looking at
the YLL estimates for gender gives us clues in the differences in the underlying health of the population.
More women died than men in nursing homes, however women also had longer remaining life expectancy
in these care homes compared to men. Thus, the remaining life expectancy was lower compared to the rest

of the population, but there was a steeper drop in the total YLL for men compared to women.

After estimating YLLs, the QALY lost were estimated, accounting for the Quality of Life at different
ages and due to underlying disease. For the total population, 49500 QALYs are lost due to the second
wave of Covid-19 in The Netherlands. An average of 4.546 QALYs were lost per Covid-19 death. The
distribution of QALY can be found in Figure 5 below. Once again, the 70-80 age group has the largest
number of QALY Lost and there is a sharp decrease in the QALY lost after age 80, owing to the decrease
in deaths, and a higher proportion of these deaths occurring in long term care. The rate at which QALYs
are lost tends to decrease after age 60, owing to the decrease in Quality in Life brought on by an increase

in persons developing complications. The slope of the QALY Lost curve is more steeper compared to the

YLL curve in Figure 3.
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Figure 5: Quality Adjusted Life Years Lost due to COVID-19 in the Dutch Population in 2020-21

Observing the distribution of QALYs lost based on gender, in total, more QALY are lost for men
compared to women. Around 26300 QALY s are lost for men and around 23200 QALY are lost for women
during the second wave. On average however, this figure is 4.588 and 4.489 QALY lost for men and women
respectively. In contrast to the average YLL, the average QALY lost is higher for men than women. The
explanation for this polarity is that those remaining life years would have relatively had a lesser QoL com-
pared to women, owing to the relatively higher risk for men of developing underlying diseases at older ages.
This lower QoL is captured in the 80-99 age group, where there is a steep decline in the number of QALY's

Lost compared to that of women for the same age group.
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Figure 6: Quality Adjusted Life Years Lost due to COVID-19 in the Dutch Population in 2020-21 by Gender

4.2 Results from SEIR model simulations

The next subsection looks at 3 different scenarios that were derived using a SEIR Model. These scenarios

include an Unmitigated Pandemic, No Lockdown and an Early Lockdown.
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4.2.1 Unmitigated Scenario

The first scenario forecasted was an unmitigated second wave, assuming the government did not enforce
any measures at the start of the second wave. This includes no efforts by the government to vaccinate
individuals. A result of not having any measures would have led to increase in contacts, and a higher of
0.232. This is similar to the start of the first wave, where there were no measures in place. A result of these
unmitigated measures would have led to the around 85 percent of the Susceptible population being infected

at the end of the second wave.

What is noticeable in such a scenario is the rising rate of persons in the infectious population as a result
of a faster spread of infection. As shown in Figure 7, The Susceptible population decreases at a rapid rate
initially as persons move from a Susceptible to a Exposed/infected state. The persons then move from a
Infected to Recovered state leading to a rapid increase in the recovered population. At the same time, the
infections rise fast at the start leading to a higher peak of infections early on. The peak of the second wave
would occur on 1-12-2020 after 90 days, where a maximum of 2.03 million people are infectious. Only
after this point, does the Susceptible and Recovered populations stabilise, owing to the decreasing growth
of infections in the population. The total estimate of infections in the period assumed in model, generates
13.96 million infections. On applying the age-standardized CFR of 0.482 percent, it is estimated that 67,300

deaths would have occurred in this unmitigated scenario.
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Figure 7: SEIR Model forecast of an unmitigated second wave

4.2.2 No lockdown

For this scenario, it is assumed that the number of contacts does not change at the start of the infectious
period. This means that no additional measures were imposed by the government, which includes no ad-
ditional measures such as a partial lockdown or a complete lockdown. What this scenario aims to measure
is a situation which the mitigation measures were put into place before the start of the second wave remain

fixed. Assuming that is 0.142 at start of the wave, A SEIR Model is forecasted, with only the number of
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infectious persons being shown in Figure 8.

Within this simulation, we assume that the government has an option to vaccinate individuals from
January 1st. This results in two sub-scenarios, one with vaccination and one without vaccination. Also dis-
played in Figure 8 is the size of the infectious population over time for the actual scenario. In can be noticed
that the infectious population waxes and wanes over certain periods of time, as opposed to the SEIR model
scenarios where there is a single peak. The SEIR model displays a situation where the number of contacts
per infectious persons remain constant as opposed to the actual situation where the number of contacts per

infectious persons increase/decrease every day.

For the scenario without vaccination, the results show that a total of 7,374,567 infections are generated,
with around 55 percent of the Susceptible population remaining at the end of the wave. On applying the
age-standardized CFR of 0.482 percent, it is estimated that 35545 deaths would have occurred in this unmit-
igated scenario. For the scenario with vaccination, a total of 4,992,712 infections are generated. Before 1st
January a total of 1,661,616 infections occur. After 1st of January until the end of June, there are 3,331,096
infections in the population and 4,992,712 persons move from an Susceptible state to a Recovered state
through vaccination. Applying the age-standardized CFR of 0.482, a total of 24065 deaths are estimated in

this scenario.

Looking at Figure 10 which compares both scenarios, vaccination leads to around 2.3 million less infec-
tions and around 11,500 lesser deaths. The peak of the infection also occurs 27 days before with vaccination,
and this peak is 20 percent smaller in terms of total number of infectious persons in the population.

An alternative sub-scenario where the vaccination program started on 1st of February instead of 1st of Jan-
uary was also estimated. The scenario with delayed vaccination lead to 90,000 more infections and 4000

more deaths in the population compared to the earlier vaccination program.
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Figure 8: SEIR Model forecast of a scenario with no lockdown with and without vaccination
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4.2.3 Early lockdown

For this scenario, it is assumed that the government imposes an early lockdown to prevent the rise of infec-
tions. AS discussed earlier in the previous chapter, the lockdown here assumes the same set of restrictions
the Dutch government would have taken in December 2020. Assuming the lockdown is imposed on 15th
October 2020, the is reduced to 0.108. As reflected in Figure 9, the number of infectious persons peaks
on 19th November 2020 with 59,896 persons in the infectious population. On January 1Ist, 2021 it is once
again assumed that the government starts vaccinating individuals. The infectious population continuous to

decline at a steady rate after this point, reduced to only 2878 persons at end of June 2021.

Figure 9 shows the change in the total infectious population, with the early lockdown introduced 45
days after the start of the wave. In this scenario, a total of 1,241,780 infections are generated. This results
in a total of 5,985 deaths. The peak of the infections occurs 77 days after the start at 67,950 persons in
the infectious population. In this scenario, vaccination leads to 5.8 million persons being moved from a
susceptible state to a recovered state. Compared to the actual scenario which is also visible in figure 9, the
peak of the infectious population is lower and the slope of the decline in infectious persons is less steep

compared to the actual scenario.
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Figure 9: SEIR Model forecast of an early lockdown with vaccination

4.3 Comparing Health Outcomes under different scenarios

The final part of this results sections applies the average Life Years Lost and QALY lost estimates we earlier
derived to the various scenarios generated in the SEIR Model. The main outcomes generated from these
models was the number of deaths, however comparing the Life Years and QALY's Lost provides an more
comprehensive overview of the health burden under these scenarios. The results of this comparison is pre-

sented in the table below.

The actual scenario is the value of Life years Lost for the overall population obtained in the previous
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section. The actual scenario resulted in 76,852 Life years being lost. Assuming the average YLLs and
QALYs lost person, the total YLLs and QALY can be calculated for the SEIR Model scenarios. Assuming
an unmitigated pandemic, there would have been 474,641 Life Years Lost as a results of no mitigation mea-
sures in place. Not having a lockdown, would have led to 169,705 Life years being lost, which is double
the amount of Life Years Lost under the actual scenario. Finally, imposing only an early lockdown after 45
days would have led to 42,209 Life Years being lost, which is less than the actual scenario. These figure are

rounded up to the nearest hundred and compared in Table 3.

Table 3: Health Outcomes under different scenarios

Scenario Infections Deaths YLL QALYs Lost
Actual Scenario - 11,000 76,900 49,500
Unmitigated Pandemic  13.9 million 67,300 474,500 305,600
No Lockdown 4.9 million 25,100 169,700 109,300
Early Lockdown 1.2 million 6,000 42,200 27,200
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5 Discussion and conclusion

5.1 Key findings

This thesis aimed to estimate health burden from the second wave of Covid-19 in The Netherlands and also
predict the health outcomes under various mitigation scenarios. The main findings from this thesis suggests
that during the second wave, over 76,000 Life Years were Lost and close to 50,000 Quality Adjusted Life
years were Lost. The results are also consistent with similar research, that the 70-80 age group had the most
Life Years Lost and Quality Adjusted Life Years Lost in the population. On average, women lost more Life
years than men, but men lost more quality adjusted years than women. An additional finding was that the
number of Life Years Lost in the 0-64 population was substantially high owing the relatively high number

of deaths in this age group in the second wave compared to the first wave of the pandemic.

In the different scenarios forecasted, more stringent mitigation measures led to a decrease in Life years
Lost and QALY Lost in the population. Implementing no mitigation measures on average would have lead
to more than 400,000 Life years being lost in the population compared to the actual scenario that occurred in
2020-2021. Conversely, an early lockdown which continues throughout the remainder of the second wave,
on average would have lead to 27,200 lesser QALY's being lost in the population. These scenarios when
compared to the actual situation suggested that measures taken by the Dutch government were sufficient to

reduce the spread of COVID-19 and reduce the health burden of the pandemic.

5.2 Strengths and limitations of study

The research methods used in this paper are novel and have been previosuly used to model the impact of
vaccination strategies on the YLL and QALY s lost. This thesis adds to the existing literature, estimating the
impact measures such as lockdowns and vaccinations may have on the mortality burden during an epidemic.

What makes this research unique is that it is a ex-post analysis of NPIs, while also investigating the
overall health burden due to these NPIs. The mitigation scenarios forecasted are valuable in understanding
the spread of Covid-19 and the extent of the mortality burden. Particularly, deriving parameters used in the
model based on public health data sources and causal estimates help to provide a better understanding about

the impact of mitigation measures.

Another strong point of this research includes the analysis of the health burden in the population, ac-
counting for the underlying health amongst Covid-19 deaths. Calculating a naive estimate that does not
account for underlying health would lead to significantly overestimating the loss of Life Years in the pop-
ulation due to Covid-19. Hence, by accounting for the underlying health this thesis provides an adjusted

estimate of Life Years Lost and QALY's Lost.

This study does however have limitations, some of which can be addressed with better information
and data sources. Firstly, the approach used to derive the Years of Life Lost assumes a fixed number of

comorbidities in the population. In actuality, most Covid patients had other comorbidities such as obesity,
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autoimmune diseases, hypertension, chronic kidney disease and more than one comorbidity. The prevalence
of these comorbidities also would have differed by gender and age, which was difficult to estimate without
the appropriate data sources. This may lead to overestimating the YLLs and QALY lost at younger ages

and underestimating them at an older age.

Another limitation of this study, is that The SEIR model used does not account the for the capacity of
the healthcare system in this setting. This means that the deaths estimated in the scenarios may be under-
estimated as it is assumed that persons move directly from an infectious state to a deceased state, without
hospitalisation or being in an intensive care unit (ICU). Since the IFR was derived from actual COVID-19
data, using the same IFR for these SEIR model scenario does not account for the limited capacity of ICUs

in the Netherlands, which would then increase the overall IFR if crossed.

Along with advanced compartmentalisation of health states, using a age-structured SEIR model would
have allowed to test the impact of interventions on the change in number of contacts for each age group.
This would lead to more accurate predictions of the number of infections. Using such a model would have
also allowed for using different IFR rates for different age groups, the estimates for which were also avail-
able from cov (2022). These losses of deaths at each age could have then been used to forecast QALY's lost
using the same method as done for the actual scenario in this paper. In context of the main findings of this
thesis, using a age-structured SEIR model would have allowed to test the impact of interventions that could

have reduced the large loss of Life years in the younger age groups during the second wave.

This study is supplementary to many other recent studies done on exploring the mortality burden of
Covid-19. When comparing these results to Wouterse et al. (2022) the total QALY's Lost and YLL lost were
moderately lesser than their total estimates. The average estimates for YLL and QALYSs lost were higher
than their paper, owing to the relatively lesser excess deaths occurring in the period examined in this paper.
The average YLL was higher for women than men and the average QYLL was higher for men than women
for both papers. In their paper, the age group with the highest estimate of QALYs lost is the 75-80 age
group, which is line with the results reported in this thesis. The authors find that the age for the highest
number of QALYs Lost is higher for men than women. In this thesis, it was only noticeable that women
had more QALY losses in the higher age classes compared to men, but there was not sufficient data to show
the QALYs lost at each age. There was however a difference in the magnitude, as the estimates for YLL
and QYLL reported in this thesis were higher than their paper, which was done for the entire year of 2020.
The supposition behind this is more Life Years were lost in for the age group 0-64 in the latter half of the

second wave, which could also explain why the average YLL and QYLL estimates were higher.

The results can also be compared to Ainslie et al. (2021), who measure health burden in YLLs and
Disability Adjusted Life Years Lost. Their results suggest that a total of around 105,000 Life years were
lost between 27th February 2020 and 31st December 2020. Their estimate is much higher than Wouterse
et al. (2022) as it does not account for underlying health. The authors however do highlight an important
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point that YLL contribution to disease was much lower in the second wave due to improvements in patient
management and care. In addition to estimating the mortality burden, their paper also compared different
vaccination scenarios in terms of YLLs and DALYs Lost. In a scenario where there is no vaccination at
all, they estimate that 98,000 Life years will be lost from February 2021 onwards. Compared to one of the
scenarios estimated in this thesis (Figure 8), no vaccination would result in close to 81,000 Life years being
Lost. The results of the unmitigated scenario can also be compared to estimates of Ferguson et al. (2020)
who find that an unmitigated pandemic with a Ry of 2.2 would result in 460,000 deaths in the U.K during
the first wave. When compared to the estimate in this paper, relative to population size, their estimate is

almost twice the size.

5.3 Policy implications of study

Considering that a part of this research is focused on analysis of health policy, this thesis as a whole has
several policy implications. First, an inquisition into the mortality burden suggested that the number of
Life Years and QALY Lost in nursing homes contributed to more than 25 percent of the total QALY's Lost
during the second wave. Stricter policies for infectious disease control in nursing homes can prevent the
spread of infection and considerably reduce the loss of life years in this vulnerable group. A policy recom-
mendation to prevent the spread of infectious diseases in nursing homes as mentioned by van den Besselaar
et al. (2022) would be to promote collaboration between public health services and nursing homes during

epidemics and provide required training to staff and management of these care homes.

The majority of the QALY lost in the population occurred in older individuals with underlying health
conditions. Around 10 percent of the total QALY's Lost occurred in the middle aged men (40-60 years old).
It is evident from other scientific papers such as Stefan et al. (2021) conducted that the onset of conditions
such as hypertension, diabetes and obesity in the population has mainly contributed to the increased risk of
dying from Covid-19. If the government focus on policies that supports better health and nutrition in adults,

the risk of developing these conditions would considerably reduced.

The outcomes from the scenarios suggests that mitigation measures prolong the duration of an infec-
tious wave but reduce the peak of the infectious population. This is also dependent on the compliance of
these mitigation policies, something that could not be tested in the model. While it is not expected that
every person in the population is expected to comply with these stringent policies, governments must aim
to still implement them in a timely manner. The results from the SEIR Model simulations also show that an
effective and timely vaccination program can undoubtedly reduce the mortality burden due to an infectious

disease. Even a month in delay in the start of a vaccination program can lead to thousands of lives being lost.
Finally, this research may have implications on the way health policy are enacted for future epidemics.

What these models consistently showed was the timely intervention of NPIs combined with an early and

effective vaccination program resulted in a lower health burden in the population. There will still exist
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however compliance issues when such measures, therefore policy must strive to also improve compliance

within the population.

What was particularly noticeable in this pandemic was the inconsistency in the message sent by the
government when imposing these measures. As mentioned by Wallenburg et al. (2022), at the start of the
second wave the Dutch government opted for a more tailored approach by providing regional authorities
a greater say in the decision making process. For example, instead of implementing a national policy of
the use of face masks in public areas, these were tasked to regional authorities who refused to take on this
responsibility. This delayed the implementation of the use of face masks as a policy and could have con-
tributed to reducing compliance in the population. Thus, a unwavering central message is also important

when implementing these NPIs.

5.4 Unanswered questions and recommendations for further research

This research explored a novel infectious disease, the scientific knowledge of which is rapidly changing
every day. It is acknowledged that Covid-19 also leads to long-term symptoms, leading to other physical
and mental illnesses. Based on the severity of a COVID-19 infection, persons can even experience multi-
organ effects or autoimmune conditions with symptoms lasting weeks or months after infection. From a
health economic perspective, Long Covid has several implications on the quality of life of those who were
severely infected by the disease. Accounting for future QALYs Lost due to infections can significantly alter

the health burden of Covid-19 in the population.

A ‘known unknown’ is the duration of immunity post recovery. Limited data from other coronavirus
infections suggest full immunity to reinfection is a matter of months rather than years for SARS and but it
is not clear if those reinfected are again infectious to others or exhibit symptoms of infection that result in
measurable morbidity. This makes models such as SEIR models less accurate as it assumes the susceptible
population completely recovers from a virus. Thus incorporating re-infection period in an epidemiological

model can be useful to generate more accurate outcomes of infections and deaths.

Further suggestions for research include a more detailed analysis of the proportion of comorbidities in
the population. In the report by RIVM (2022) it was seen that pre-existing conditions in Covid-19 deaths
also included various other comorbidities than Diabetes, COPD and heart Disease. Deriving the Standard
Mortality rates for other these comorbidities, while also adjusting for the fact that some patients may have

more than one would lead to a more accurate estimate of the adjusted QALY's Lost in the population.

In conclusion, this paper conceptualizes the overall health burden during the second wave of the pan-
demic in The Netherlands and also compares the outcomes of mitigation strategies to the actual scenario
that unfolded during 2020-2021. This paper highlights the effects mitigation strategies have on reducing the

health burden in the population, suggesting that timely implementation of mitigation strategies are essential.
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6 Appendix

6.1 Appendix A: Life table for Dutch Population without comorbidities

0NN N B W= O™
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qx)
0.00351
0.00042
0.00013
0.00013
0.00009
0.00006
0.00009
0.00004
0.00007
0.00003
0.00005
0.00006
0.00006
0.00009
0.00015
0.00014
0.00015
0.00016
0.0002
0.00023
0.00027
0.00031
0.00027
0.00024
0.00028
0.00027
0.00025
0.00035
0.00035
0.0003
0.00043
0.00037
0.00038
0.0005
0.00048
0.00058
0.00057
0.00058
0.00079
0.00073
0.00076
0.00089
0.00093
0.00099
0.00113
0.00116
0.00148
0.00151
0.00174
0.00187

d(x)
0.003516
0.00042
0.00013
0.00013
9E-05
6E-05
9E-05
4E-05
7E-05
3E-05
5E-05
6E-05
6E-05
9E-05
0.00015
0.00014
0.00015
0.00016
0.0002
0.00023
0.00027
0.00031
0.00027
0.00024
0.00028
0.00027
0.00025
0.00035
0.00035
0.0003
0.00043
0.00037
0.00038
0.0005
0.00048
0.00058
0.00057
0.00058
0.00079
0.00073
0.00076
0.00089
0.00093
0.00099
0.001131
0.001161
0.001481
0.001511
0.001742
0.001872

smrl(x)
100000
99649
99607.15
99594.2
99581.25
99572.29
99566.31
99557.35
99553.37
99546.4
99543.42
99538.44
99532.47
99526.49
99517.54
99502.61
99488.68
99473.76
99457.84
99437.95
99415.08
99388.24
99357.43
99330.6
99306.76
99278.95
99252.15
99227.34
99192.61
99157.89
99128.14
99085.52
99048.85
99011.22
98961.71
98914.21
98856.84
98800.49
98743.19
98665.18
98593.15
98518.22
98430.54
98339
98241.64
98130.63
98016.8
97871.74
97723.95
97553.91

smrL(x)

99824.5

99628.07
99600.67
99587.72
99576.77
99569.3

99561.83
99555.36
99549.89
99544.91
99540.93
99535.45
99529.48
99522.02
99510.07
99495.64
99481.22
99465.8

99447.89
99426.51
99401.66
99372.83
99344.01
99318.68
99292.86
99265.55
99239.74
99209.97
99175.25
99143.01
99106.83
99067.19
99030.04
98986.46
98937.96
98885.52
98828.66
98771.84
98704.18
98629.17
98555.69
98474.38
98384.77
98290.32
98186.14
98073.72
97944.27
97797.84
97638.93
97462.7
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smrLEx
81.84255
81.12906
80.16294
79.1733
78.18353
77.19052
76.19512
75.20194
74.20492
73.21008
72.21227
71.21585
70.22009
69.22428
68.23046
67.24062
66.24997
65.25983
64.2702
63.28295
62.2974
61.31409
60.33294
59.3491
58.36323
57.37944
56.3948
55.40878
54.428
53.44688
52.46277
51.48513
50.504
49.52301
48.54753
47.5706
46.59792
45.62421
44.6504
43.6853
42.71685
41.74896
40.78571
39.82321
38.86218
37.90557
36.94901
36.00304
35.05673
34.11696

smrqL(x)
99824.5

99628.07
99600.67
99587.72
99576.77
99569.3

99561.83
99555.36
99549.89
99544.91
99540.93
99535.45
99529.48
99522.02
99510.07
99495.64
99481.22
99465.8

94475.5

94455.19
94431.57
94404.19
94376.81
94352.75
94328.21
92019.17
91995.24
91967.64
91935.45
91905.57
91872.03
91835.28
91800.84
91760.45
91715.49
91666.88
92404.8

92351.67
92288.41
92218.27
92149.57
92073.55
91989.76
91901.45
91804.04
91698.92
87170.4

87040.08
86898.65
86741.8

QALE
75.51385485
74.77808092
73.80929082
72.81882226
71.82822493
70.83464505
69.83886538
68.84510644
67.84784036
66.85255504
65.85454567
64.85781356
63.86167526
62.86547719
61.87109059
60.88029763
59.88875206
58.89766171
57.90700683
56.96849553
56.03149202
55.09649633
54.16343424
53.22793403
52.29059778
51.35511021
50.44185465
49.52735237
48.61753073
47.70739054
46.79456796
45.88749889
4497731199
44.06723367
43.16204644
42.25555159
41.35280504
40.44112296
39.52932111
38.62520435
37.71807982
36.8114118

35.90878669
35.00677777
34.10600554
33.20906005
32.31208437
31.46931756
30.62623513
29.78884201

dQALY
44.394407
44202254
43.868926
43.517683
43.161126
42.79744
42.426978
42.052213
41.669683
41.282653
40.888135
40.488507
40.08327
39.67193
39.255587
38.835323
38.408301
37.975198
37.535913
37.142226
36.743671
36.340519
35.932665
35.517125
35.09417
34.666174
34.254637
33.836129
33.414625
32.98665
32.550451
32.111813
31.664475
31.210576
0.9267775
30.288602
29.819595
29.334855
28.842857
28.349245
27.846133
27.335936
26.821243
26.299437
25.770886
25.237479
24.696214
24.199792
23.695902
23.189125
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51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

q(x)
0.00196
0.00242
0.00261
0.00283
0.00292
0.00315
0.00339
0.00381
0.0042
0.0049
0.00536
0.00622
0.00684
0.00749
0.00877
0.00915
0.01029
0.01123
0.01243
0.01367
0.01451
0.01676
0.01835
0.02015
0.02171
0.02607
0.0293
0.03195
0.03644
0.04109
0.04528
0.05198
0.05726
0.06627
0.07576
0.08282
0.09764
0.11273
0.12577
0.1428
0.16312
0.17785
0.19759
0.21697
0.24174
0.26143
0.2832
0.3166
0.33196
0.38587

d(x)
0.001962
0.002423
0.002613
0.002834
0.002924
0.003155
0.003396
0.003817
0.004209
0.004912
0.005374
0.006239
0.006864
0.007518
0.008809
0.009192
0.010343
0.011294
0.012508
0.013764
0.014616
0.016902
0.01852

0.020356
0.021949
0.026416
0.029738
0.032472
0.037121
0.041958
0.046337
0.05338

0.058965
0.068568
0.078784
0.086452
0.102742
0.119606
0.134412
0.154084
0.178075
0.195832
0.220136
0.244584
0.276729
0.303039
0.332958
0.380675
0.403407
0.487549

smrl(x)
97371.48
97180.64
96945.46
96692.43
96418.79
96137.25
95834.42
95509.54
95145.65
94746.03
94281.78
93776.43
93193.14
92555.7
91862.46
91056.82
90223.65
89295.25
88292.47
87194.99
86003.03
84755.13
83334.63
81805.44
80157.06
78416.85
76372.53
74134.81
71766.2
69151.04
66309.63
63307.13
60016.42
56579.88
52830.33
48827.91
44783.98
40411.27
35855.71
31346.14
26869.91
22486.89
18487.6
14834.63
11615.96
8807.919
6505.265
4662.974
3186.676
2128.827

smrL(x)

97276.06
97063.05
96818.94
96555.61
96278.02
95985.83
95671.98
95327.59
94945.84
94513.91
94029.1

93484.78
92874.42
92209.08
91459.64
90640.24
89759.45
88793.86
87743.73
86599.01
85379.08
84044.88
82570.04
80981.25
79286.96
77394.69
75253.67
72950.51
70458.62
67730.34
64808.38
61661.78
58298.15
54705.11
50829.12
46805.94
42597.63
38133.49
33600.92
29108.02
24678.4

20487.24
16661.11
13225.3

10211.94
7656.592
5584.119
3924.825
2657.752
1064.414
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smrLEx
33.17994
32.24412
31.32113
30.40178
29.48665
28.57153
27.66024
26.75263
25.85303
24.95996
24.08041
23.20748
22.3496
21.50008
20.65856
19.83692
19.01548
18.20799
17.40911
16.62193
15.84537
15.07131
14.31969
13.57802
12.84697
12.12097
11.43203
10.76201
10.1007
9.463784
8.847889
8.243809
7.668402
7.103796
6.57249
6.070252
5.573238
5.122188
4.709449
4.315036
3.950579
3.623147
3.298755
2.987937
2.67732
2.371468
2.033908
1.639939
1.16804
0.5

smrql(x)
86575.69
86386.11
86168.86
85934.49
85687.44
85427.39
85148.06
84841.56
84501.8
84117.38
83685.9
83201.46
82658.23
82066.08
81399.08
80307.25
79526.87
78671.36
77740.94
76726.72
75645.87
74463.77
73157.05
71749.39
70248.25
68571.7
62460.55
60548.92
58480.66
56216.18
53790.95
51179.27
48387.47
45405.24
42188.17
38848.93
35356.03
31650.8
27888.77
24159.66
20483.07
17004.41
13828.72
10977
8475911
6354.971
4634.819
3257.605
2205.934
883.4633

QALE
28.9538178
28.11980482
27.29694031
26.47720728
25.6610875
24.84493411
24.03203678
23.22226882
22.41938211
21.62206378
20.83634236
20.05622895
19.28897427
18.52875475
17.77522423
17.03855501
16.30580659
15.58473195
14.87070485
14.16629843
13.47049592
1277630808
12.10053778
11.43245233
10.77244351
10.11567229
9.488588808
8.932469669
8.383584442
7.854941095
7.343748053
6.842361376
6.36477403
5.896150508
5.455166438
5.038309138
4.625787128
4251415985
3.908842782
3.581480082
3.278980497
3.007211663
2.73796681
2.479987364
2.222175285
1.968318763
1.688143592
1.361148985
0.9694732
0.415

dQALY
22.676862
22.15798
21.640463
21.118017
20.590988
20.056386
19.516782
18.972031
18.425182
17.875182
17.327076
16.775972
16.22801
15.678409
15.126919
14.582321
14.034294
13.488947
12.942383
12.396912
11.851735
11.300719
10.758793
10.216611
9.6745731
9.1283397
8.6019499
8.1393541
7.6777569
7.2292568
6.7916215
6.3580096
5.9416732
5.5290617
5.1379545
47655217
4.3932929
4.0536712
3.7412636
3.4406392
3.1613972
2.9097103
2.6586643
2.4168743
2.1736978
1.932952
1.6648621
1.3485992
0.9653761
0.415



6.2 Appendix B: Years of Life lost (LEx) estimates for Nursing Homes

X
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100

Males
4.559644225
4.44853231
4.336328503
4.223254323
4.109527864
3.995363132
3.880969415
3.766550691
3.652305079
3.538424324
3.425093335
3.312489753
3.20078358
3.09013684
2.980703289
2.872628177
2.766048045
2.661090576
2.557874477
2.456509421
2.357096016
2.259725819
2.164481388
2.071436372
1.980655635
1.892195408
1.806103476
1.722419395
1.641174724
1.562393294
1.486091489
1.412278546
1.340956874
1.272122382
1.205764827
1.141868158

Females
6.799603053
6.633906591
6.466581837
6.297959133
6.128363713
5.958114715
5.787524241
5.616896476
5.446526865
5.276701351
5.107695677
4.939774756
4.773192103
4.608189335
4.444995746
4.283827939
4.124889532
3.968370932
3.814449164
3.663287778
3.515036805
3.369832781
3.227798821
3.089044756
2.953667313
2.821750347
2.693365119
2.568570616
2.447413901
2.329930514
2.216144885
2.10607079
1.99971182
1.897061878
1.798105684
1.702819305
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Total
5.545226
5.410097
5.27364
5.136124
4.997816
4.858974
4.719854
4.580703
4.441763
4.303266
4.165438
4.028495
3.892643
3.75808
3.624992
3.648788
3.513411
3.380095
3.248991
3.120238
2.993963
2.870285
2.749306
2.631121
2.515812
2.403451
2.294097
2.187803
2.084606
1.984539
1.887621
1.793864
1.703272
1.615839
1.531552
1.450391



6.3 Appendix C: Standard mortality rates for comorbidities

Age

0-4

5-9

10-14
15-19
20-24
25-29
30-34
35-39
40-44
45-49
50-54
55-59
60-64
65-69
70-74
75-79
80-84
85-99

Diabetes
Male
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001736
0.002874
0.008802
0.015508
0.062
0.028742
0.040838

Female
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.001017
0.00098
0.00157
0.00513
0.00976
0.0433
0.02641
0.052

COPD
Male
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.014
0.017
0.03
0.04
0.07
0.11
0.15

Female
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.013
0.013
0.014
0.017
0.03
0.04
0.07
0.11
0.15

Heart Failure

Male

0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0387
0.051

0.0632
0.0755
0.0968
0.124

0.155

Female
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0292
0.0359
0.045

0.0566
0.0728
0.0933
0.1195
0.1379

6.4 Appendix D: Quality of Life Estimates for The Netherlands

6.5 Appendix E: Quality of Life Estimates for Comorbidities

Quality of life estimates for comoribidities

Ageband index
0-17 0
18-24 18
25-34 25
35-44 35
45-54 45
55-64 55
65-74 65
75+ 75

NL

1
0.95
0.927
0.935
0.89
0.89
0.886
0.83

Quality of life: comorbidities

Comorbidity Value
Diabetes 0.799
COPD 0.733
Heart Disease 0.639
Nursing Homes  0.490
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Source
Clarke et al. (2016)
Moayeri et al. (2016)
King et al. (2016)
Makai et al. (2012)



6.6 Appendix F: STATA code for Simulations of Mitigation Scenarios

ssc install epimodels
ado update epimodels

*Unmitigated scenario*
epi_seir, beta(®.232) gamma(@.185) sigma(@.2) mu(@.88) nu(@.88) susceptible(16524888) exposed(19145) infected(19145)
recovered(®) days(388) daye(2828-89-81) steps(l)
clear

*No lockdown (without vaccination)

epi_seir, beta(®.142) gamma(@.185) sigma(@.2) mu(@.88) nu(@.88) susceptible(16524888) exposed(19145)
infected(19145) recovered(@) days(388) day@(2828-89-81) steps(l) nograph

drop S E R

tempfile nolockdown

save " " nolockdown
clear

*No lockdown (with vaccination)

epi_seir, beta(®.142) gamma(@.185) sigma(@.2) mu(@.88) nu(@.8827) susceptible(14838124) exposed(152353.88)
infected(255274.34) recovered(1324528.4) days(188) day@(2821-81-81) steps(l) nograph

drop SER
rename I I_nv
merge t using

nolockdown

*early Lockdown®

local interventiondate=3@
local modelwindow=121
local betafd=8.142

local betabB=8.188

local notetxt = "Note: social distancing policy reducing intensity of "///+ “"spread of the disease from {&beta}=
“betad' to " //f + "{&beta}="betaB' after “interventiondate' days."

local inicond® “susceptible(l6524888) "///+ "exposed(19145) "///+ “"infected(19145) “///+ "recovered(8)"

epi_seir, beta( betad') gamma(@.185) sigma(@.2) mu({@.88) nu(@.88) “inicond®' ///days( modelwindow') day@(2828-89-81) nograph
local m& “rimaxinfect)’

local dl=t[ interventiondate']

local inicondl = “susceptible(”=5["interventiondate']') " ///+ "infected( =I[ interventiondate']') ™ ///

+ "recovered( =R[ " interventiondate']')"

label variable I “"Infected, no intervention {({&beta}=8.142)"

sort t
tempfile tmp
save " "“tmp'™'
clear

local dayl=string( dl',"%tdCY-N-D")

epi_seir, beta( betaB') gamma(@.185) sigma(®.2) inicondl' ///days( ="modelwindow'-"interventiondate'+1")
V!Kclear day@( dayl') nograph

local mB “ri{maxinfect)’
label variable I “"Infected, with intervention ({&beta}=8.188)"

rename 5 5B
rename E EB
rename I IB
rename R REB

sort t

merge t using
sort t

use actual_infections.dta
tsset t

tsline IB I

tmp
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